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Abstract  

 
A statistical problem that arises in several fields is that of estimating the features of an unknown 
distribution, which may be conditioned on covariates, using a sample of binomial observations on 
whether draws from this distribution exceed threshold levels set by experimental design. 
Applications include bioassay and destructive duration analysis. The empirical application we 
consider is referendum contingent valuation in resource economics, where one is interested in 
features of the distribution of values (willingness to pay) placed by consumers on a public good 
such as endangered species. Sample consumers are asked whether they favor a referendum that 
would provide the good at a cost specified by experimental design. This paper provides 
estimators for moments and quantiles of the unknown distribution in this problem under both 
nonparametric and semiparametric specifications. 
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1 Introduction

We consider estimation of moments and quantiles of an unknown distribution, which may be condi-

tioned on covariates, using a sample of binomial observations on whether draws from this distribution

exceed threshold levels set by experimental design. For example, consider contingent valuation stud-

ies, which are used to assess the willingness to pay (WTP) for a good or resource, such as a change

in environmental quality. In referendum format experiments each subject is asked if their WTP

exceeds a test value or bid v chosen by experimental design. Objects of interest to estimate from

subject�s binary responses include the mean, variance and (for median voter models) median WTP

across individuals, perhaps conditioned on characteristics x that make them likely voters.1

The problem can be generally described as uncovering features of conditional survival curves from

unbounded interval censored data. LetW denote a random failure time, and let G(w j x) = Pr(W >

w j X = x) denote the survival curve conditioned on a d vector of time invariant covariates x. In

duration experiments w is time, but it could also be, e.g., an administered dose of a toxin where

W is the lethal dose and G is the dose response curve, or W could be WTP as above. Assume we

have interval censored data, that is, for each individual i, Wi is latent and we observe (Xi, Vi, Yi)

where Vi is a test level in the w dimension set by experimental design, Vi is drawn independent of

Wi given a covariate vector Xi, and Yi = 1(Wi > Vi) is a binary indicator for the event Wi > Vi. The

important attributes of these data are the experimental design feature thatW and V are conditionally

independent given X, and that failure times W are not observed, so properties of the distribution G,

such as the mean and other failure time moments, must be inferred from the binary status indicators

Yi and single test levels Vi. Our estimators could be readily extended to multiple (adaptive) test

levels and multinomial status.

In the contingent valuation example, y equals one if the subject�s WTP W exceeds the bid v

chosen by experimental design. More generally, y could indicate if a bene�t W exceeds a posited

cost v in, e.g., an experimental voting or investment decision. In bioassay, v is the time an animal

1Other experimental designs include follow up queries to gain more information about WTP, and open ended

questions, where subjects are simply asked to state their WTP. Open ended questions often su¤er from high rates

of nonresponse (with possible selection bias), while referendum format follow up responses can be biased due to the

framing e¤ect of the �rst bid. This shadowing e¤ect is common in unfolding bracket survey questions. See McFadden

(1994) for references and experimental evidence regarding response biases. Other issues regarding the framing of

questions also impact survey responses, particularly anchoring to test values, including the initial test value; see Green

et al. (1998) and Hurd et al. (1998). The data generation process may then be a convolution of the target distribution

and a distribution of psychometric errors. This paper will ignore these issues and treat the data generation process as

if it is the target distribution. However, we do empirically apply our estimators separately to �rst round and follow

up bids, and �nd di¤erences in the results, which provides evidence that such biases are present. The di¢ cult general

problem of deconvoluting a target distribution in the presence of psychometric errors is left for future research.
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exposed to an environmental hazard is sacri�ced for testing and y is one if an abnormality is found

by the test at time v, so G is then the distribution of survival time W until the onset of abnormality.

In a dosage response model, y is one if a lethal dose W exceeds a treatment dose v. For materials

testing, at treatment level v, y is one if the material meets some requirement, e.g., G could be the

distribution of speeds W at which a car safety device fails, with y indicating failure at test speed v.

A common procedure is to completely parameterize W , e.g., to assume W equals X>�0 � "

with " � N(�0; �
2). The model then takes the form of a standard probit Y = I[X>�0 � V >

"] and can be estimated using maximum likelihood. However, estimation of the features of the

distribution of W di¤ers from ordinary binomial response model estimation when the model is not

fully parameterized, because the goal is estimation of moments or quantiles ofW , rather than response

or choice probabilities of Y . So, for example, in the above parameterized model E(W j X = x) =

X>�0 � �0, and therefore any binomial response model estimator that fails to estimate the location

term �0, such as the semiparametrically e¢ cient estimator of Klein and Spady (1993), is inadequate

for estimation of moments of W .

Another important di¤erence is the role of the support of V . By construction G(v j x) = E(Y j
V = v;X = x), so G can be estimated using ordinary parametric, semiparametric, or nonparametric

conditional mean estimation. But nonparametric estimation of moments of W then requires identi-

�cation of G(v j x) everywhere on the support of W , so nonparametric identi�cation requires that
the support of V contain the support of W . However, virtually all experiments only consider a small

number of values for v. While the literature contains many estimators of moments of W ,2 virtually

all of them are parametric or semiparametric, using functional form assumptions to obtain identi-

�cation, without recognizing or acknowledging the resulting failure of nonparametric identi�cation.

We show in an appendix that, given a �xed discrete design for V , even assuming thatW = m(X)�"
with X and " independent is still not su¢ cient for identi�cation, though identi�cation does become

possible in this case if m(X) is �nitely parameterized.

Our nonparametric estimators obtain identi�cation by assuming either that bids v are draws

from a continuously distributed random variable V , or that the experimental design varies with the

sample size n, so for any �xed n there may be a �nite number of values bids can take on, but this

number of possible bid values becomes dense in the support of W as n goes to in�nity.3 We also

2See, e.g., Kanninen (1993) and Crooker and Herriges (2004) for comparisons of various, mostly parametric, WTP

estimators. Estimators that are not fully parameterized include Chen and Randall (1997), Creel and Loomis (1997),

and An (2000) for WTP and Ramgopal, Laud, and Smith (1993), and Ho and Sen (2000) for bioassay.
3Virtually all existing contingent valuation data sets draw bids from discrete distributions. However, large surveys

typically have bid distributions with more mass points than small surveys, consistent with our assumption of an

increasing number of bid values as sample size grows. See, e.g., Crooker and Herriges (2000) for a study of WTP bid

designs, with explicit consideration of varying numbers of mass points.
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show how this dependence of survey design on sample size a¤ects the resulting limiting distributions,

and we provide an alternative identifying assumption based on a semiparametric speci�cation of W

described below.4

With an estimate of G and su¢ cient identifying assumptions, features of the distribution of W

such as moments and quantiles can be readily recovered, in particular, moments �r(x) = E(r(W;X) j
X = x) for given functions r can be obtained by integrating (over the support of W ) r(w; x) times

an estimator of �@G(w j x)=@w, the density of W . We instead provide direct semiparametric and
nonparametric estimators of �r(x) that do not require an initial estimator of G. These estimators

exploit the feature in our model that v is determined by experimental design. For example, we

provide estimators of unconditional moments of W (or moments conditioned on discrete X) that

do not require kernels or other smoothers, given knowledge of the experimental design, speci�cally,

the limiting distribution of bids. For continuous X or when the bid distribution is unknown, our

estimators still have the advantage over direct estimators of not requiring �rst stage estimation of

the derivative of G.

We consider estimation for a few di¤erent information sets. In the most general case, the distrib-

ution of W jX is completely unspeci�ed apart from smoothness, and is nonparametrically estimated.

We may write this case as W = m(X; ") for an unobserved ". This includes as a special case, and is

strictly weaker than, the location model W = m(X)� "; where the function m and the distribution

of " are unknown.

The second case we analyze is the semiparametric modelW = �[m(X; �0)�"] for known functions
m and �, where the parameters �0 and the distribution of " ? X are unknown. This model includes

as special cases the above probit model as well as logit and (with � exponential and " extreme value)

the Weibull proportional hazards model for G. In this semiparametric model, identi�cation requires

that the support of m(X; �0)� ��1(V ) become dense in the support of ", so in this semiparametric
case identi�cation is possible with a �xed, discrete design for V , given the presence of a continuously

distributed element of X.5

In either of these two cases (nonparametric or semiparametricW ), the asymptotic design distrib-

ution of the bid values may either be known or unknown to the researcher, which yields a total of four

di¤erent estimation scenarios. We provide estimators, and associated limiting normal distributions,

for each of these four situations, since each is relevant for some applications. We also provide Monte

4An approach that we do not pursue in this paper is to sacri�ce point identi�cation and instead estimate bounds

on features of G, as in McFadden (1998). See also Manski and Tamer (2002).
5Other possible identifying assumptions might include homogeneity as in Matzkin�s (1992) threshold crossing model,

or An�s (2000) model which assumes W is an unknown monotonic transformation of X>�0 + " with the distribution

of " known. See also Manski and Tamer (2002) and Das (2002).
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Carlo analyses of the estimators, and an empirical application estimating conditional mean WTP to

protect wetland habitats in California�s San Joaquin Valley.

2 Estimators

2.1 The Data Generation Process and Estimands

Let G(w j x) = Pr(W > w j X = x), so G is the unknown complementary cumulative distribution

function of a latent, continuously distributed unobserved random scalar W , conditioned on a vector

of observed covariates X. Let g(w j x) denote the conditional probability density function of W ,
so g = �dG=dw. A test value v (a realization of V ) is set by an experimental design or natural

experiment. De�ne Y = 1(W > V ) where 1(�) is the indicator function. The observed data consist
of a sample of realizations of covariates X, test values V , and outcomes Y . The framework is

similar to random censored regressions (with censoring point V ), except that for random censoring

we would observeW for observations havingW > V , whereas in the present context we only observe

Y = I(W > V ).

Given a function r(w; x), the goal is estimation of the conditional moment �r(x) = E[r(W;X) j
X = x] for any chosen x in the support of X. Of particular interest are the moments based on

r(W;X) = W k for integers k: We also consider estimation of quantiles. We assume the conditional

distribution of W given X = x is not �nitely parameterized, since otherwise ordinary maximum

likelihood estimation would su¢ ce.

Assumption A.1. The covariate vector X has support X � Rd. The latent scalar W has an

unknown, twice continuously di¤erentiable, strictly monotonic, conditional CDF 1 � G(w j x) with
probability density function g(w j x) and a compact support [�0(x); �1(x)]. The variables W and V

are conditionally independent, given X. Let Y = I(W > V ). Let G�1 be the inverse of the function

G with respect to its �rst element.

Assumption A.2. The function r(w; x), chosen by the researcher, is regular, meaning that it is

continuous in (w; x) for all w and x on their supports, and for each x is twice continuously di¤er-

entiable in w. De�ne r0(w; x) = @r(w; x)=@w. Let �(x) be a function or constant in [�0(x); �1(x)].

The moment �r(x) exists, de�ned by �r(x) = E[r(W;X) j X = x]:

It follows immediately from Assumption A.1, in particular the conditional independence of W

and V , that

G(v j x) = E(Y j V = v;X = x): (1)
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and if G(v j x) can be estimated for all v 2 supp(W ), then conditional moments �r(x) could be
estimated using

�r(x) =

Z
supp(W )

r(v; x)
d[1�G(v j x)]

dv
dv:

The disadvantage of this expression is that it involves the derivative of a high dimensional function

G(vjx). We apply an integration by parts to this expression to obtain the basis for more direct
estimators of �r(x).

If G(w j x) is not at least partly parameterized, then equation (1) implies that for identi�cation
of the distribution of W , the support of V should contain the support of W . As noted in the

introduction, and by Theorem 5 in the Appendix, the distribution of W is in general not identi�ed

when the support of V has a �nite number of elements. To identify features of the distribution of

W with minimal restrictions on G, our nonparametric estimators assume an experimental design in

which the number of mass points may grow to in�nity with the sample size, as follows.

Let Hn(v; x j n) denote the realization of the observed sample of size n, which includes both
nature�s selection of X and the experimental design that selects V given X. Realizations could be

random draws from a CDF H(v; x j n), but the data, particularly bids, could also be derived from
some purposive sampling protocol. The requirement we place on the data generating process is the

following.

Assumption A.3. Let Hn(v; x j n) denote the empirical CDF of V;X; for sample size n.

supv jHn(v; x j n) � H(v; x)j ! 0 a:s:, where H(v; x) is a CDF having the property that the corre-

sponding conditional distribution of V given X = x, denoted H(v j x), has a strictly positive contin-
uous probability density function h(v j x) with compact support [�0(x); �1(x)] such that �0(x) � �0(x)

and �1(x) � �1(x).

Assumption A.3 is used to obtain nonparametric identi�cation. For obtaining limiting distribu-

tions it will also be assumed that n� [Hn(v; x j n)�H(v; x)] converges weakly to a Gaussian process

for some � , with � = 1=2 for root n asymptotics. Two examples illustrate this data generating

process assumption:

1. Suppose for each sample observation i = 1; : : : ; n, Xi; Vi is drawn randomly from the CDF

H(v; x). Then the required sup norm convergence follows by the Glivenko-Cantelli theorem, and the

convergence to a Gaussian process with � = 1=2 can be shown by, e.g., the Shorack and Wellner

(1986 p. 108¤) treatment of triangular arrays of empirical processes.

2. For each sample size n, a design with Jn possible values of V is selected, and let the set

of values (the support) be denoted Jn. Suppose this design has the property that the maximum
distance between a point in the support of W and a design point is of order 1=Jn, and that
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n��1Jn !1. Suppose Xi is drawn randomly from a distribution, and Vi is drawn randomly from a

discrete distribution H(v j Xi; n) whose support is Jn. Under some further conditions we can expect
n1=2 [Hn(v; x j n)�H(v; x j n)] to satisfy a triangular array functional central limit theorem, while
H(v; x j n) � H(v; x) is uniformly of order J�1n : This case covers [or would cover when the design

sequence is spelled out satisfying the condition on Jn and the convergence properties of H(v j Xi; n)]

all current studies, at least up to the quality of the asymptotic approximation of the design.

In our simulation studies, we will examine the size of �nite sample bias that results when our

estimators are applied both with discrete V and continuous V .

For estimation we suppose that a sample Zi = (Xi; Vi; Yi) for i = 1; : : : ; n is observed, generated

in accordance with Assumption A.3, where Vi is a realization of V , Yi is a realization of Y , and Xi

is a realization of X. Using this data, we will provide �ve di¤erent estimators for �r(x), denotedb�jr(x) for j = 1; 2; 3; 4; 5. Each is appropriate for di¤erent information sets.
The estimator b�1r(x) is for nonparametric estimation when the limiting experimental design

density h(v j x) is known, and b�2r(x) is for nonparametric estimation when h(v j x) is unknown.
Similarly, b�3r(x) and b�4r(x) cover the cases of semiparametric estimators where W is parameterized

up to an unknown error term, with h(v j x) known and unknown, respectively. An additional

semiparametric estimator b�5r(x) is provided that is simpler than b�3r or b�4r, but may only be used
for certain choices of r.

2.2 Nonparametric Moments

Theorem 1. Let Assumptions A.1 and A.2 hold. Let h(v j x) be a strictly positive conditional
probability density function, and H(v j x) be the associated CDF having compact support [�0(x); �1(x)]
such that �0(x) � �0(x) and �1(x) � �1(x). De�ne

sr(x; v; y) = r[�(x); x] +
r0(v; x)[y � 1(v < �(x))]

h(v j x)

tr(x; v) =
r0(v; x)[G(v j x)� 1(v < �(x))]

h(v j x) :

Then

�r(x) = r[�(x); x] +

Z �1(x)

�0(x)

tr(x; v)H(dv j x): (2)

Also, if V is drawn from a conditional CDF H(v j x; n) at sample size n, then

�r(x) = E [sr(X;V; Y ) j X = x] +

Z �1(x)

�0(x)

tr(x; v)[H(dv j x)�H(dv j x; n)] (3)

and, if Assumption A.3 also holds, as n!1;
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�r(x) = lim
n!1

E [sr(X;V; Y ) j X = x] : (4)

Proof of Theorem 1. Starting from the de�nition of �r(x),

�r(x) =

Z �1(x)

�0(x)

r(v; x)g(v j x)dv

=

Z �(x)

�0(x)

r(v; x)
d[1�G(v j x)]

dv
dv +

Z �1(x)

�(x)

r(v; x)
�dG(v j x)

dv
dv

and applying integration by parts to each of the above integrals yields

�r(x) = r[�(x); x] +

Z �1(x)

�0(x)

r0(v; x)[G(v j x)� 1(v < �(x))]dv

= r[�(x); x] +

Z �1(x)

�0(x)

r0(v; x)[G(v j x)� 1(v < �(x))]

h(v j x) H(dv j x);

which is equation (2). Adding and subtracting
R �1(x)
�0(x)

tr(x; v)H(dv j x; n) gives

�r(x) = r[�(x); x] +

Z �1(x)

�0(x)

r0(v; x)[G(v j x)� 1(v < �(x))]

h(v j x) H(dv j x; n)

+

Z �1(x)

�0(x)

tr(x; v)[H(dv j x)�H(dv j x; n)];

which yields equation (3) after applying the law of iterated expectations to replace G(v j x) by Y
in the �rst integral. Equation (4) then follows from the convergence in Assumption A.3 and the

bounded continuity of tr.

We can use equation (3) to compute an estimator of �r(x) by the analogy principle substituting in

estimators of the unknown quantities. Let b�1r(x) denote this estimator, details supplied below. The
estimator b�1r(x) is numerically simple (and in particular does not require kernel or other smoothers
if X is discrete), but requires the researcher to know, or be able to estimate, the limiting design

density h(v j X).6 An estimator that does not entail knowing or estimating the limiting density

h can be constructed as follows. First observe that equation (2) in Theorem 1 does not require

Assumption A.3, so the CDF H(v j x) and associated density h(v j x) need not describe the limiting
6If h is unknown, then based on b�1r an estimator of �r(x) could be constructed by �rst estimating h. Speci�cally,

one could replace h(v j x) with an estimate bh(v j x) (using, e.g., kernel density estimation) in the de�nition of
sr(x; v; y). Call the result bsr(x; v; y). The estimator of �r(x) would then be b��1r(x) = bE[bsr(X;V; Y ) j X = x]
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data generating process for V , but may simply be chosen for convenience or e¢ ciency. In particular,

letting H(v j x) be a uniform distribution reduces equation (2) to

�r(x) = r[�(x); x] +

Z �1(x)

�0(x)

r0(v; x)[G(v j x)� 1(v � �(x))]dv. (5)

Let a0 and a1 be known or estimated constants such that a0 � �0(x) and a1 � �1(x). Then, by

equations (5) and (1), a consistent estimator of �r(x) is given by

b�2r(x) = r[�(x); x] +

Z a1

a0

r0(v; x)[ bE(Y j V = v;X = x)� 1(v < �)]dv; (6)

where bE(Y j V = v;X = x) is an estimate of E(Y j V = v;X = x): One could construct additional

analogous estimators based on (2) instead of (5), using other choices of H, but for simplicity, we

apply Theorem 1 only in the form of equations (3) and (5). Finally, one can compute

b�0r(x) = �r(x) = �
Z
supp(W )

r(v; x)bg(v j x)dv;
where bg(v j x) is an estimate of g(v j x) = @G(v j x)=@v:
Consistency and potential e¤ects of �nite sample design on limit distributions for b�2r(x) are

analogous to the above discussion of b�1r(x). In applications, the choice between using b�1r(x) orb�2r(x) would be based at least in part on the information set of the researcher regarding the limiting
design density. We provide more details later on the construction and limiting distributions of these

estimators.

In the special case of the nonparametric location model W = �[m(X) � "] with " ? X, and

� known and invertible, these �r(x) estimators can be used to estimate an unknown m(x), since

m(x) = �r(x) � E(") with r(w; x) = ��1(w): Chen and Randall (1997) and Crooker and Herriges

(2004) consider this case. An (2000) considers the model where � is unknown but m and the

distribution of " are known; this also is a special case of our nonparametric model.

We summarize the three estimators below in terms of the quantities they assume are known and

in terms of their �curse factor�- this is a vector indicating the highest dimensions d of nonparametric

estimation carried out along with the highest degree of derivative estimated �. According to Stone

(1980) the optimal pointwise rate for estimating regression functions and their derivatives is of order

n�(p��)=(d+2p); where p is the degree of smoothness of the function. In our case this di¢ culty is washed

out to �rst order in the asymptotics but is present in higher order terms, making estimators with

higher curse factor less attractive.

Estimator b�0r(x) b�1r(x) b�2r(x)
Known - h(v j x) -

Curse Factor7 (d+ 1; 1) (d; 0) (d+ 1; 0)

7The vector (d; p) gives the highest dimensional nonparametric estimation (d) that is used and the highest number
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Note that we can estimate unconditional moments �r = E[r(W;X)] at rate root n without any

smoothing and without any parameter estimation, using E[sr(X;V; Y )]:

2.3 Semiparametric Moments

Corollary 1 below will be used in place of Theorem 1 to obtain faster convergence rates using a

semiparametric model for W .

Assumption A.4. The latent W satis�es W = �[m(X; �0)�"], where m and � are known func-

tions, � is invertible and di¤erentiable with derivative denoted �0, �0 2 � is a vector of parameters,
and " is a disturbance that is distributed independently of V;X; with unknown, twice continuously

di¤erentiable CDF F"(") and compact support [a0; a1] that contains zero. De�ne U = m(X; �0) �
��1(V ). Let 	n(U j n) denote the empirical CDF of U at sample size n. supv j	n(U j n)�	(U)j ! 0

a:s:; where 	(U) is a CDF that has an associated PDF  (U) that is continuous and strictly positive

on the interval [a0; a1].

De�ne s�r(x; u; y) and t
�
r(x; u) by

s�r(x; u; y) = r[�(m(x; �0)); x] +
r0[�(m(x; �0)� u); x]�0(m(x; �0)� u)[y � 1(u > 0)]

 (u)
:

t�r(x; u) =
r0[�(m(x; �0)� u); x]�0(m(x; �0)� u)[F"(u)� 1(u > 0)]

 (u)
:

If � is the identity function, then W equals a parameterized function of x plus an additive

independent error. If � is the exponential function, then it is ln(W ) that is modeled with an

additive error. Other examples include: the Box-Cox, ��1(W ) = (W � � 1)=�; the Zellner-Revankar
��1(W ) = lnW + �W; and the arcsinh ��1(W ) = sinh�1(�W )=�; where in each case � is a free

parameter.

Corollary 1. Let Assumptions A.1, A.2, and A.4 hold. Then

E(Y j U = u) = F"(u)

�r(x) = r[�(m(x; �0)); x] +

Z a1

a0

t�r(x; u)	(du);

�r(x) = E [s�r(x; U; Y )] +

Z a1

a0

t�r(x; u)[	(du)�	(du j n)] = lim
n!1

E [s�r(x; U; Y )]

and, if Assumption A.3 also holds,

	n(u j n) = E(1�H[�(m(X; �0)� u) j X;n])

of derivatives (p) that are estimated.
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 n(u) = E [h[�(m(X; �0)� u) j X]�0(m(X; �0)� u)]!  (u)

Proof of Corollary 1. Recall that Y = I(W > V ) = I(" < U), so E(Y j U = u) = F"(u).

Starting from the de�nition of �r(x),

�r(x) =

Z a1

a0

r[�(m(x; �0)� "); x]F"(d")

=

Z 0

a0

r[�(m(x; �0)� u); x]
dF"(u)

du
du+

Z a1

0

r[�(m(x; �0)� u); x]
d[F"(u)� 1]

du
du

and applying integration by parts to each of the above integrals yields

�r(x) = r[�(m(x; �0)); x] +

Z a1

a0

r0[�(m(x; �0)� u); x]�0(m(x; �0)� u)[F"(u)� I(u > 0)]du

= r[�(m(x; �0)); x] +

Z a1

a0

t�r(x; u)	(du)

= r[�(m(x; �0)); x] +

Z a1

a0

t�r(x; u)	n(du j n) +
Z a1

a0

t�r(x; u)[	(du)�	n(du j n)]

Next, apply the law of iterated expectations to obtain

E [s�r(X;U; Y )] = E

�
r0[�(m(x; �0)� u); x]�0(m(x; �0)� u)[F"(u)� 1(u > 0)]

 (u)

�
=

Z a1

a0

t�r(x; u)	n(du j n);

which gives the expressions for �r(x), and
R a1
a0
t�r(x; u)[	(du) � 	n(du j n)] !p 0 by the uniform

convergence of 	n:

Note that 	n(u j n) is the empirical probability that U � u, which is the same event as V �
�(m(X; �0) � u). Conditioning on X = x this probability would be 1 � Hn[�(m(x; �0) � u) j
x; n], and averaging over X gives 	n(u j n) = E(1 � Hn[�(m(X; �0) � u) j X;n]): This implies
	(u) = limn!1E(1 � H[�(m(X; �0) � u) j X]), where the only role of the limit is to evaluate
the expectation at the limiting distribution of X. Taking the derivative with respect to u gives

 (u) = limn!1E(h[�(m(X; �0)� u j X)�0(m(X; �0)� u)]). Consistency of  n(u) then follows from

the uniform convergence of the distribution of X to its limiting distribution in Assumption A.3.

Now consider rate root n estimation of arbitrary conditional moments based on Corollary 1. It

will be convenient to �rst consider the case where �0 is known, implying that the conditional mean

of W is known up to an arbitrary location (since " is not required to have mean zero). A special case

of known �0 is when x is empty, i.e., estimation of unconditional moments of W , since in that case

we can without loss of generality take m to equal zero.
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2.3.1 Estimation With Known �

Suppose that �0 is known. Considering �rst the case where the limiting design density h(vjx) is also
known, for a given u de�ne the sample average b (u) by

b (u) = 1

n

nX
i=1

h[�(m(Xi; �0)� u) j Xi]�
0(m(Xi; �0)� u):

Then, based on Corollary 1, we have consistency of the estimator

b��3r(x) = r[�(m(x; �0)); x] +
1

n

nX
i=1

r0[�(m(x; �0)� Ui); x]�
0(m(x; �0)� Ui)[Yi � 1(Ui > 0)]b (Ui) :

This estimator is computationally extremely simple, since it entails only sample averages. Special

cases of this estimator were proposed by McFadden (1994) and by Lewbel (1997).

Let e (u) be an estimator of  (u) that does not depend on knowledge of h. For example e (u)
could be a (one dimensional) kernel density estimator of the density of U , based on the data bUi and
evaluated at u. We then have the estimator

b��4r(x) = r[�(m(x; �0)); x] +
1

n

nX
i=1

r0[�(m(x; �0)� Ui); x]�
0(m(x; �0)� Ui)[Yi � 1(Ui > 0)]e (Ui) ;

which may be used when h is unknown.

Finally, similarly to the nonparametric estimator b�0r(x) one can compute
b��5r(x) = Z a1

a0

r[�(m(x; �0)� "); x] bf"(")d"; bf"(") = d bE(Y j U)
dU

????y
U="

;

where bE(Y j U) is a nonparametric estimator of E(Y j U) based on fYi; Uigni=1 with Ui = m(Xi; �0)�
��1(Vi):

2.3.2 Estimation of �

First, consider estimation of �. By Assumption A.4,

E[��1(W ) j X = x] = �0 +m(x; �0)

for some arbitrary location constant �0. This constant is unknown since no location constraint is

imposed upon ". Let s��1(X;V; Y ) denote sr(X;V; Y ) with r(w; x) = ��1(w). It then follows from

Theorem 1 that

lim
n!1

E [s��1(X;V; Y ) j X = x] = lim
n!1

E(��1(W ) j X = x).
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Note that the limit as n!1 means that the expectations are taken at the limiting distributions of

the data. In other words the asymptotic conditional expectation of the known or estimable quantity

s��1 is equal to �0 +m(x; �0): Under some identi�cation conditions this can be used for estimation

of (�0; �0): Speci�cally, we could estimate �0 by minimizing the least squares criterion

(b�; b�) = argmin
�;�

1

n

nX
i=1

[s��1(Xi; Vi; Yi)� ��m(Xi; �)]
2: (7)

Ifm is linear in parameters, then a closed form expression results for both parameter estimates. If h is

not known, one could replace h(V j X) in the expression of s��1(X;V; Y ) with an estimate bh(V j X).
The resulting estimator would then take the form of a two step estimator with a nonparametric

�rst step (the estimation of h). This estimator of � and � is equivalent to the estimator for general

binary choice models proposed by Lewbel (2000), though Lewbel provides other extensions, such as

to estimation with endogenous regressors.

With Assumption A.4, the latent error " is independent of X, and therefore the binary choice

estimator of Klein and Spady (1993) may provide a semiparametrically e¢ cient estimator of �.8

2.3.3 Estimation with Unknown �

Let b� denote a root n consistent, asymptotically normal estimator for �0. Replacing �0 with any
� 2 � we may rewrite the estimators of the previous section as b���r(x; �) for � = 3; or 4. In

doing so, note that � appears both directly in the equations for b���r, and also in the de�nition of Ui =
m(Xi; �)���1(Vi):We later derive the root n consistent, asymptotically normal limiting distribution
for each estimator b��r(x) = b���r(x;b�); where we suppress the dependence on b� for simplicity. The
estimators are not di¤erentiable in Ui (except b��5r(x))9; which complicates the derivation of their
limiting distribution, e.g., even with a �xed design, Theorem 6.1 of Newey and McFadden (1994) is

not be directly applicable due to this nondi¤erentiability.

We summarize the three estimators below in terms of the quantities they assume are known and

in terms of their �curse factor�.

Estimator b�3r(x) b�4r(x) b�5r(x)
Known �;m; h �;m �;m

Curse Factor (0; 0) (1; 0) (1; 1)

8The Klein and Spady estimator does not identify a location constant �, but that is not required for this step,

since no location constraint is imposed upon ". Also, for the present application, the limiting distribution theory for

Klein and Spady would need to be extended to allow for data generating processes that vary with the sample size.
9But this estimator depends on nonparametric estimates of the derivative of a regression function. This estimator

shares the asymptotics of weighted average derivative estimators.
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3 Estimation Details and Distribution Theory

In this section we provide more detail about the computation of the estimators b�1r(x); : : : ; b�5r(x)
and their distribution theory.

3.1 Nonparametric Estimators

There are many di¤erent nonparametric methods for estimating regression functions. For purely

continuous variables with density bounded away from zero throughout their support the local linear

kernel method is attractive. This method has been extensively analyzed and has some positive

properties like being design adaptive, and best linear minimax under standard conditions; see Fan

and Gijbels (1996) for further discussion.10 One issue we are particularly concerned about is how to

handle discrete variables. Speci�cally, some elements of X could be discrete, either ordered discrete

or unordered discrete, while V can be ordered discrete. When there is a single discrete variable

that takes only a small number of values, the pure frequency estimator is the natural and indeed

optimal estimator to take in the absence of additional structure. In fact, one obtains parametric

rates of convergence in the pure discrete case [and in the mixed discrete/continuous case the rate

of consistency is una¤ected by how many such discrete covariates there are], see Delgado and Mora

(1995) for discussion. When there are many discrete covariates, it may be desirable to use some

�discrete smoothing�, as discussed in Li and Racine (2002), see also Wang and Van Ryzin (1981).

Coppejans (2003) considers a case most similar to our own - he allows the distribution of the discrete

data to change with sample size. One major di¤erence is that his data have arrived from a very

speci�c grouping scheme that introduces an extra bias problem.

We shall not outline all the possibilities for estimation here with regard to the covariatesX; rather

we assume that X is continuously distributed with density bounded away from zero. However,

the estimators we de�ne can be applied in all of the above situations [although they may not be

optimal], and the estimators are still asymptotically normal with the rate determined by the number

of continuous variables.

We will pay more attention to the potential discreteness in V; since this is key to our estimation

problem. For clarity we will avoid excessive subscripts/superscripts. We suppose that V is asymp-

totically continuous in the sense that for each n; Vi is drawn from a distribution H(vjXi; n) that has

10If there is a continuous density but with some points in the support of zero density, the rate of convergence may be

slower but Hengartner and Linton (1996) have shown that the local linear estimator can still achieve the optimal rate

in this case. There are other non-standard cases: Lu (2002) considers the case where the covariate process has fractal

dimension [e.g., in the multivariate case where the covariates lie on a nonlinear manifold of lower local dimension].
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�nite support, increasing with n:11

Under our conditions there is a bias in the estimates of �r(x) of order J
�1 in this discrete case.

Therefore, for this term not to matter in the limiting distribution we require that �nJ�1 ! 0,

where �n is the rate of convergence of the estimator in question [�n =
p
n in the parametric case but

�n =
p
nbd for some bandwidth b in the nonparametric cases]. In the nonparametric case, the spacing

of the discrete covariates is closer than the bandwidth of a standard kernel estimator, that is, we

know that b2J !1 so that J�1 is much smaller than the smoothing window of a kernel estimator.

Therefore, the pure frequency estimator is dominated by a smoothing estimator, and we shall just

construct smoothing-based estimators.

The estimator b�1r(x) involves smoothing the data
sr(Zi) = r[�(Xi); Xi] +

r0(Vi; Xi)[Yi � 1(Vi < �(Xi))]

h(Vi j Xi)

against Xi; where Zi = (Vi; Xi; Yi): De�ne the p� 1-th order local polynomial regression of sr(Zi) on
Xi by minimizing

Qsp�1;n (#) =
1

n

nX
i=1

Kb(Xi � x)

24sr(Zi)� X
0�jjj�p�1

#j (Xi � x)j

352 (8)

with respect to the vector # containing all the #j; where Kb (t) =
Qd
j=1 kb(tj) with kb(u) = k(u=b)=b;

where k is a univariate kernel function and b = b(n) is a bandwidth. Here, we are using the multi-

dimensional index notation, for vectors j =(j1; : : : ; jd)
> and a = (a1; : : : ; ad)> : j! = j1! � � � � � jd!;

jjj =
dX
k=1

jk; a
j = aj11 � : : :� ajdd ; and

P
0�jjj�p�1 denotes the sum over all j with 0 � jjj � p� 1: Let

b#0 denote the �rst element of the vector b# that minimizes (8): Then let
b�1r(x) = b#0: (9)

This estimator is linear in the dependent variable and has an explicit form.

In computing the estimator b�2r(x) we require an estimator of G(v j x); which is given by the
smooth of Yi on Xi; Vi: Let eXi =

�
Vi; X

>
i

�>
and ex = (v; x)> and de�ne the p � 1-th order local

polynomial regression of Yi on eXi by minimizing

QYp;n (#) =
1

n

nX
i=1

eKb( eXi � ex)
24Yi � X

0�jjj�p�1

#j

� eXi � ex�j
352 ; (10)

11The case where Vi is drawn from a continuous distribution H(vjXi) for all n is really a special case of our set-up.
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where eKb( eXi � ex) = kb (Vi � v)Kb (Xi � x) : Let b#0 denote the �rst element of the vector b# that
minimizes (10); and let bG(v j x) = b#0: Then de�ne

b�2r(x) = r(�(x); x) +

Z �1(x)

�0(x)

r0(v; x)[ bG(v j x)� 1(v < �(x))]dv; (11)

where the univariate integral is interpreted in the Lebesgue Stieltjes sense (actually under our con-

ditions bG(v j x) is a continuous function and 1(v < �(x)) is a simple step function).

Finally, to compute b�0r(x) we use one higher order of polynomial, i.e., minimize QYp;n (#) with
respect to #; and let @ bG(v j x)=@v = b#v; where b#v is the second element of the vector b#: Then de�ne

b�0r(x) = �Z �1(x)

�0(x)

r(v; x)
@ bG(v j x)

@v
dv: (12)

When there are some discrete components to X; it may be advantageous to modify the kernel

window along the lines discussed in Li and Racine (2002).

The estimator (11) is in the class of marginal integration/partial mean estimators sometimes

used for estimating additive nonparametric regression models, see Linton and Nielsen (1995), Newey

(1994), and Tjø stheim and Auestad (1994), except that the integrand is not just a regression function

and the integrating measure �; where (asymptotically) d�(v) = r0(v; x)1(�0(x) � v � �1(x))dv; is not

necessarily a probability measure, i.e., it may not be positive or integrate to one.The distribution

theory for the class of marginal integration estimators has already been worked out for a number of

speci�c smoothing methods, see the above references.

We make the following assumptions.

Assumption B.1. k is a symmetric probability density with bounded support, and is continuously

di¤erentiable on its support.

Assumption B.2. The random variables (Vi; X) are asymptotically continuously distributed, i.e.,

for some �nite constant ch

sup
v2[�0(x);�1(x)]

jH(vjx; n)�H(vjx)j � ch
J
; (13)

where H(v; x) possesses a Lebesgue density h(v; x) along with conditionals h(vjx) and marginal h(x):
Furthermore, inf�0(x)�v��1(x) h(v; x) > 0: For all n larger than some n0; var(Yi j Vi = v;Xi = x) <1;

and the limiting conditional variance �2(v; x) = var(Yi j Vi = v;Xi = x) = G(v j x)[1 � G(v j x)]:
Furthermore, G(v j x) and h(v; x) are p-times continuously di¤erentiable for all v with �0(x) � v �
�1(x); letting g(v j x) = @G(vjx)=@v denote the conditional density of W jX: The set [�0(x); �1(x)]�
fxg is strictly contained in the support of (V;X) for large enough n:
The condition (13) is satis�ed provided the associated frequency function h(v j x; n) satis�es

minv2Jn h(v j x; n) � v=Jn and maxv2Jn h(v j x; n) � v=Jn for some bounds v > 0 and v < 1; and
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provided the support Jn becomes dense in [�0(x); �1(x)]: The other conditions are standard regularity
conditions for nonparametric estimation.

For a function f : Rs ! R, arrange the elements of its partial derivatives (for all vectors � =
(�1; : : : ; �s) such that

Ps
j=1 �j = p), @

Ps
j=1 �jf(t)=@t�11 � � � @t�ss as a large column vector f (p;s)(t)

of dimensions (s + p � 1)!=s!(p � 1)!. Let ad;p(k); ad+1;p(k) and a�d+1;p+1(k) be conformable vectors
of constants depending only on the kernel k; and let cd;p(k); cd+1;p(k) and c�d+1;p+1(k) also be scalar

kernel constants.. De�ne

�0(x) = a�d+1;p+1(k)
>
Z �1(x)

�0(x)

r(v; x)G(p+1;d+1)(vjx)dv

�1(x) = ad;p(k)
>�(p;d)r (x) ; �2(x) = ad+1;p(k)

>
Z �1(x)

�0(x)

r0(v; x)G(p;d+1)(vjx)dv;

!0(x) = c�d+1;p+1(k)

Z �1(x)

�0(x)

�2(v; x)

�
r0(v; x)h(v; x)� r(v; x)h0(v; x)

h2(v; x)

�2
h(v; x)dv

!1(x) = cd;p(k)
var[sr(Z) j X = x]

h(x)
; !2(x) = cd+1;p(k)

Z �1(x)

�0(x)

�2(v; x)

�
r0(v; x)

h(v; x)

�2
h(v; x)dv:

Theorem 2. Suppose that assumptions A1-A3, B1 and B2 hold and that the bandwidth sequence

b = b(n) satis�es b! 0; nbd+2= log n!1; and Jb2 !1: Then, for j = 1; 2;

p
nbd
�b�jr(x)� �r(x)� bp�j(x)

�
=) N(0; !j(x)):

If G is p+ 1-times continuously di¤erentiable, then

p
nbd [b�0r(x)� �r(x)� bp�0(x)] =) N(0; !0(x)):

Remarks.

1. The estimator b�0r(x) requires one more derivative than b�1r(x); b�2r(x) for the results stated
here.

2. In the local linear case the kernel constants in !1(x) and !2(x) are identical. A simple argument

then shows that !1(x) � !2(x). By the law of iterated expectation

var[sr(Z) j X = x] = E[var[sr(Z) j V;X] j X = x] + var[E[sr(Z) j V;X] j X = x]:

Furthermore,

E[var[sr(Z) j V;X] j X = x] =

Z �1(x)

�0(x)

�
r0(v; x)

h(v j x)

�2
�2(v; x)h(v j x)dv

= h(x)

Z �1(x)

�0(x)

�
r0(v; x)

h(v; x)

�2
�2(v; x)h(v; x)dv:
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It follows that !1(x) � !2(x): In the special case that h0(v; x) = 0; !0(x) are the same !2(x) apart

from the kernel constants, but otherwise the ranking could go either way.

3. Regarding the biases, in the special case of local linear estimation and two continuous deriva-

tives:

�1(x) /
dX
j=1

Z �1(x)

�0(x)

@2fr(v; x)g(v j x)g
@x2j

dv

�2(x) / =

Z �1(x)

�0(x)

"
dX
j=1

@2G(v j x)
@x2j

+
@2G(v j x)

@v2

#
r0(v; x)dv:

Under certain conditions these two biases are the same applying integration by parts.

4. If r(v; x) is a vector of functions, then the results are as above with the square operation

replaced by outer product of corresponding vectors. Suppose one wants to estimate var(W jX =

x) = �W 2(x)��2W (x); a nonlinear function of the vector (E(W 2jX = x); E(W jX = x)): In this case,

one obtains the asymptotic distribution by the delta method applied to the joint limiting behaviour

of the estimators of �W 2(x); �W (x).

3.2 Semiparametric Estimators

In this section we assume the conditions of A4 prevail. In this case, discreteness of Vi is less of an

issue - even if Vi is discrete, if there are continuous variables in Xi; then Ui = m(Xi; �0) � ��1(Vi)
can be continuously distributed. For simplicity we therefore assume a �xed design for our limiting

distribution calculations. Similar asymptotics will result when the assumption that Vi is continuously

distributed is replaced by an assumption like equation (13).

Let b� be some consistent estimator of �0: De�ne:
b�3r(x) = r[�(m(x;b�)); x] + 1

n

nX
i=1

r0[�(m(x;b�)� bUi); x]�0(m(x;b�)� bUi)[Yi � 1(bUi > 0)]b (bUi)
b�4r(x) = r[�(m(x;b�)); x] + 1

n

nX
i=1

r0[�(m(x;b�)� bUi); x]�0(m(x;b�)� bUi)[Yi � 1(bUi > 0)]e (bUi) ;

where bUi = m(Xi;b�)� ��1(Vi) and
b (bUi) = 1

n

nX
j=1

h[�(m(Xj;b�)� bUi)jXj]�
0(m(Xj;b�)� bUi) ; e (bUi) = 1

nb

nX
j=1

k

 bUi � bUj
b

!
:

De�ne also the estimators b��3r(x) and b��4r(x) as the special cases of b�3r(x) and b�4r(x) in which � is
known, in which case bUi is replaced by Ui.
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We next state the asymptotic properties of the conditional moment estimators based on Corollary

1. We need some conditions on the estimator and on the regression functions and densities.

Assumption C.1. Suppose that

p
n(b� � �0) =

1p
n

nX
i=1

&(Zi; �0) + op(1)

for some function & such that E[&(Zi; �0)] = 0 and 
 = E[&(Zi; �0)&(Zi; �0)
>] < 1: Suppose also

that �0 is an interior point of the parameter space.

Assumption C.2. The function m is twice continuously di¤erentiable in � and

sup
k���0k��n

@m@� (x; �)
 � d1(x) ; sup

k���0k��n

 @2m

@�@�>
(x; �)

 � d2(x)

with Edr1(Xi) <1 and Edr2(Xi) <1 for some r > 2:

Assumption C.3. The density function h is continuous and is strictly positive on its compact

support and is twice continuously di¤erentiable. The transformation � is three times continuously

di¤erentiable.

Assumption C.4. The kernel k is twice continuously di¤erentiable on its support, and therefore

supt jk00(t)j <1: The bandwidth b satis�es b! 0 and nb6 !1:

The regularity conditions are quite standard. Assumption C4 is used for b�4r(x); which is based
on a one-dimensional kernel density estimator.

For each � 2 � and x 2 X , de�ne the stochastic processes:

f0(Zi; �) =
r0[�(m(x; �)� Ui(�)); x]�

0(m(x; �)� Ui(�))[Yi � 1(Ui(�) > 0)]
 (Ui)

f1(Zi; �) = r[�(m(x; �)); x] +
r0[�(m(x; �)� Ui(�)); x]�

0(m(x; �)� Ui(�))[Yi � 1(Ui(�) > 0)]
 (Ui)

where Ui(�) = m(Xi; �)� ��1(Vi): Then

�F =

�
@

@�
E [f1(Zi; �)]

�???y
�=�0

	F = E

�
f0(Zi; �0)

 0(Ui)

 (Ui)
ei�+ E

�
f0(Zi; �0)

 (Ui)
e� ijej�

ei =
@m

@�>
(Xi; �0)� E

�
@m

@�>
(Xi; �0)

�
and � ij = [h

0(�jXj)(�
0)2 + h(�jXj)�

00] (m(Xj; �0)� Ui); where e� ij = � ij � Ei� ij:
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The above quantities may depend on x but we have suppressed this notationally. Note also that

Ef1(Zi; �0) = �r(x):

Theorem 3. Suppose that Assumptions A1-A4 and C1-C3 hold. Then, as n!1;

p
n[b�3r(x)� �r(x)] =) N(0; �2�(x)); (14)

where 0 < �2�(x) = var(�j) <1 with �j = �1j + �2j + �3j; where:

�1j = f0(Zj; �0)� Ef0(Zj; �0)

�2j = (�F �	F ) &(Zj; �0)

�3j = �E
�
f0(Zi; �0)

h[�(m(Xj; �0)� Ui)jXj]�
0(m(Xj; �0)� Ui)�  (Ui)

 (Ui)
j Xj

�
:

The three terms �1j; �2j; and �3j are all mean zero and have �nite variance. They are generally

mutually correlated. When �0 is known, the term �2j = 0 and this term is missing from the asymptotic

expansion. The term �3j is due to the estimation of  even when �0 is known:

We next give the distribution theory for the semiparametric estimator b�4r(x): Let
	�F = E

�
 0(Ui)

 (Ui)
ff0(Zi; �0)� E[f0(Zi; �0)jUi]g �i

�
� E

�
E[f0(Zi; �0)jUi]

 (Ui)

@

@U
E

�
@m

@�>
(Xi; �0) j Ui

��

�i =
@m

@�>
(Xi; �0)� E

�
@m

@�>
(Xi; �0) j Ui

�
:

Theorem 4. Suppose that assumptions A1-A4, B1, B2 and C1-C4 hold. Then

p
n[b�4r(x)� �r(x)] =) N(0; ��2� (x));

where 0 < ��2� (x) = var(�
�
j) <1; with: ��j = ��1j + ��2j + ��3j; where �

�
1j = �1j; while

��2j = (�F �	�F ) &(Zj; �0)

��3j = � (E[f0(Zi; �0)jUi]� E [E[f0(Zi; �0)jUi]]) :

The three terms ��1j; �
�
2j; and �

�
3j are all mean zero and have �nite variance. They are generally

correlated. When �0 is known, the term ��2j = 0 and this term is missing from the asymptotic

expansion. The term ��3j is due to the estimation of  :
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4 Standard Errors and Inference

In the semiparametric case consistent standard errors can be constructed by substituting population

quantities by estimated ones along the lines discussed in Newey and McFadden (1994) for �nite

dimensional parameters. In the nonparametric case, similar methods can be applied (see Härdle

and Linton (1994)) for estimating the asymptotic variance; however, in that case the bias is hard to

estimate. An alternative approach to inference here is based on the bootstrap. In our case a standard

i.i.d. resample from the data set can be shown to work for the nonparametric and semiparametric

cases even under our discrete/asymptotically continuous design at least as far as approximating the

asymptotic variance, see Shao and Tu (1995), Horowitz (2001), and Mammen (1992). We have taken

this approach to inference below due to its simplicity.

5 E¢ ciency Comparison and Robustness

We have shown that generally b�2r(x) has smaller mean squared error than b�1r(x): However, there are
other comparisons between the estimators that are also relevant. For example, the estimator b�1r(x)
requires prior knowledge of h(v j x), and entails more smoothness than b�2r(x); as can be seen from
the bias expressions given above. On the other hand b�1r(x) also uses a lower dimensional smoothing
operation than b�2r(x); which may be important in small samples.12 An advantage of the estimatorb�1r(x) is that it takes the form of a standard nonparametric regression estimator, so known regression
bandwidth selection methods can be automatically applied, whereas a comparable theory relevant

for b�2r(x) is not so well developed.
Regarding the semiparametric estimators, it is not possible to provide an e¢ ciency ranking of

the two estimators b�3r(x) and b�4r(x) uniformly throughout the �parameter space�. This result partly
depends on the choice of b�. It may be possible to develop an e¢ ciency bound for estimation of the
function �r(:) by following the calculations of Bickel, Klaassen, Ritov and Wellner (1993, Chapter

5). Since there are no additional restrictions on �r; the plug-in estimator with e¢ cient b� should be
e¢ cient. See, e.g., Brown and Newey (1998)

12The evidence on the �nite sample performance of marginal integration estimators is mixed, see Sperlich, Linton,

and Härdle (1999).
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6 Extensions

6.1 A Special Case

Suppose that the semiparametric speci�cation A4 holds and that

r(w; x) = [��1(w)]k: (15)

When � is the identity function, this would include many common choices of r in applications. Let

sk(X;V; Y ) denote sr(X;V; Y ) with r(w; x) = [��1(w)]k. For any k we then have

E[(��1(W ))k j X = x] = E
h
(m(X; �0)� ")k j X = x

i
=

kX
`=0

m(x; �0)
`(�1)k�`

�
k

`

�
E("k�`)

by the binomial expansion. Therefore,

E[[��1(W )]k j X = x] =

kX
`=0

m(x; �0)
`�k`;

where �k`; ` = 0; : : : ; k are unknown parameters depending on the moments of the error distribution.

It also follows from Theorem 1 that

lim
n!1

E [sk(X;V; Y ) j X = x] = lim
n!1

E(��1(W )k j X = x).

We may estimate the nuisance parameters �k` along by solving the least squares problem

(b�k0; : : : ; b�kk) = arg min
�k0;:::;�kk

1

n

nX
i=1

 
sk(Xi; Vi; Yi)�

kX
`=0

m(Xi;b�)`�k`!2 ;
where b� is any root-n consistent estimator such as de�ned in (7). Then let

b�6wk(x) = kX
`=0

m(x;b�)`b�k`: (16)

to estimate �wk(x). Given b� one has explicit formula for b�5wk(x): One could also choose the parame-
ters simultaneously

b� = (b�; b�k0; : : : ; b�kk) = arg min
�k0;:::;�kk;�

1

n

nX
i=1

 
sk(Xi; Vi; Yi)�

kX
`=0

m(Xi; �)
`�k`

!2
;

which may or may not be quite convenient.
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The asymptotic properties follow from standard theory for nonlinear least squares estimation of

nonlinear regression with parameters � = (�; �k0; : : : ; �kk) in the presence of heteroskedasticity [note

that var[swk(Xi; Vi; Yi)jXi = x] varies with x]. Let g(�) =
Pk

`=0m(x; �)
`�k`; G(�) = @g(�)=@� ; and

� = E
�
M(Xi)M

>(Xi)
�

; 
 = E
�
M(Xi)M

>(Xi)var (swk(Xi; Vi; Yi)jXi)
�
;

where M(Xi) =
@

@�

 
kX
`=0

m(Xi; �)
`�k`

!
�=�0

:

For identi�cation we require that the matrix � be of full rank: It follows that

p
n(b� � � 0) =) N(��1
��1);

p
n(b�5wk(x)� �5wk(x)) =) N(G>��1
��1G);

see for example Pakes and Pollard (1989).

This estimator should work well when k is small, but otherwise a large number of auxiliary

parameters �k` have to be estimated and this may result in the estimate of �r(x) having a large

variance. It is also sensitive to the existence of higher moments.

This method could also be extended to more general class of � functions. Suppose that �(t) =P1
j=0  jt

j for some known coe¢ cients f jg1j=1: This is true for a large class of � functions of interest
like the exponential and logarithm. ThenE (W jX = x) =

P1
j=0  j (m(x; �0)� ")j =

P1
j=0
e jm(x; �0)j

for some coe¢ cients e j depending on the error moments. In practice, we approximate E(W jX = x)

by b�(x) =PL
j=0

be jm(x;b�)j; where L = L(n) is some truncation parameter, and where be j;b� are esti-
mates obtained from least squares regressions. Other moments can similarly estimated by truncated

power series approximations.

6.2 Quantiles

Let wq(x) denote the q�th conditional quantile of W given X = x. It follows immediately from

Assumption A.1, in particular equation (1), that

wq(x) = G�1(1� q j x); (17)

where G(v j x) = E(Y j V = v;X = x), so we may invert a nonparametric estimator of this

expectation to obtain an estimate of wq(x), for any q such that 1 � q 2supp(V ), and so will be
identi�ed for all quantiles given Assumption A.3. The rate of convergence of bwq(x) = bG�1(1� q j x)
will be slow, because of the high dimension of bG and because it behaves like a regression function

not a conditional c.d.f.
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For semiparametric quantile estimation, if Assumptions A.1 and A.4 hold then

q = Pr[�[m(X; �0)� "] � wq(X) j X = x)] = 1� F"[m(X; �0)� ��1(wq(x))]; so

wq(x) = �[m(X; �0)� F�1" (1� q)]

and from Corollary 1, F" is obtained by F"(u) = E(Y j U = u): Therefore, let bUi = m(Xi;b�)���1(Vi)
and estimate the conditional quantile wq(x) by

cF"(u) = bE(Y j bU = u) ; ewq(x) = �[m(x;b�)�cF"�1(1� q)];

where the function cF" is obtained by nonparametrically regressing Y on bU , and is then numerically
inverted to get cF"�1. This estimator ewq(x) will converge at a faster rate than the nonparametric
quantile estimator bwq(x), because estimation of the quantiles wq(x) given � only requires estimation
of the one dimensional regression F"(u) = E(Y j U = u), instead of the high dimensional G(v j x).
The distribution theory for our quantile estimators is immediate. The estimator bwq(x) = bG�1(1�

q j x)has the standard distribution theory for conditional quantile estimation. See, e.g., Chaudhuri
(1991). The distribution theory for ewq(x) = m(x;b�) �cF"�1(1 � q) is the same as the distribution

theory for ewq(x) = m(x; �0)�fF"�1(1� q); where

fF"(u) = bE(Y j U = u);

which is again a standard one-dimensional conditional quantile estimator. This is because b� converges
at rate root-n, so the estimation error in b� is asymptotically irrelevant given the slower convergence
rate of quantiles.

The quantile estimators converge more slowly than the mean estimators because there is one

more dimension in the smoothing or at least one lest degree of averaging. This might be speci�c to

the estimation strategy adopted here, but it seems to be di¢ cult to avoid. For example, one might

be tempted to write

med(W jX = x) = argmin
�
E [r�(W )jX = x] ;

where r�(w) = jw � �j and solve the resulting optimization problem to deliver an estimator of

med(W jX = x): However, r�(w) is not di¤erentiable in � for all w; and even if one uses the a.e.

derivative, sign(w � �); the resulting criterion function is not regular enough so that the in the

empirical problem one does not obtain asymptotic normality at the same rate as for di¤erentiable r:
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7 Numerical Results

7.1 Monte Carlo

We report the results of a small simulation experiment based on a design of Crooker and Herriges

(2004). Let

Wi = �1 + �2Xi + �"i;

where Xi is uniformly distributed on [�30; 30] and "i is standard normal. We take �1 = 100 and

�2 = 2; which guarantees that the mean WTP is equal to 100. We vary the value of � 2 f5; 10; 25; 50g
and sample size n 2 f100; 300; 500g: For our �rst set of experiments the bid values are �ve points
in [25; 175] if n = 100; ten points if n = 300; and 15 points if n = 500; these points are randomly

assigned to individuals i before drawing the other data and so are �xed in repeated experiments. We

take � = 100: This design was chosen because it permits direct comparison with the parametric and

SNP estimators of WTP considered by Crooker and Herriges (2004), at least when n = 100 (they

did not increase the number of bids with sample size).

In this case G(vjx) = 1� �((v � �1 � �2x)=�) and g(vjx) = �((v � �1 � �2x)=�)=�; where �; �

denote the standard normal c.d.f. and density functions respectively. We estimate the moments:

E[W j X = x]; i.e., r(w; x) = w; and std(W j X = x) =
p
E[W 2 j X = x]� E2[W j X = x]; which

corresponds to taking r(w; x) = (w2; w) and then computing the square root of rw2 � r2w. Then:

�w(x) = �1 + �2x; �w2(x) = (�1 + �2x)
2 + �2; and std(W j X = x) = �:

We compute estimators b��(:) for � = 1; 2; 3; 4; 6. In the computation of b�1(:) and b�4(:) we used a
Gaussian kernel and Silverman�s rule of thumb bandwidth. This kernel and bandwidth is not likely to

be optimal for this problem, but they are convenient and hence fairly widely used choices in practice.

In this design, the estimator b�1(x) is prdicted to be approximately unbiased while the predicted
bias of b�2(x) is small but non-zero.
In Table 1 and 2 we report four di¤erent performance measures: root pointwise mean squared error

(RPMSE), pointwise mean absolute error (PMAE), root integrated mean squared error (RIMSE),

and integrated mean absolute error (IMAE). Crooker and Herriges (2004) only report pointwise

results. Like Crooker and Herriges, our pointwise results are calculated at the central point x = 0.

Thus, their Table 2a (n = 100) and Appendix Table 1a (n = 300) are directly comparable with a

subset of our results. Our conclusions are:

(A1) The performance of our estimators improves as � decreases and as sample size increases

according to all measures: the pointwise measures improve at approximately our theoretical asymp-

totic rate, while the integrated measures improve much more slowly; the semi-parametric estimators

improve more rapidly with sample size.
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(A2) For the larger samples, estimator b�4 performs best according to nearly all measures although
for large �; b�4 performs almost identically. For smaller sample sizes the ranking is a bit more variable:
only b�3 is never ranked �rst.
(A4) Our best estimators always perform better than the Crooker and Herriges SNP estimator.

(A5) The estimates of std(W j X = x) are subject to much more variability and bias than the

estimates of E[W j X = x]; particularly in the large � case.

While our estimators seem to work reasonably well in this discrete bid case, we would expect

to obtain better results when the bid distribution is actually continuous. We repeated the above

experiments with bid distribution uniform on [25; 175] and report the results in Tables 3 and 4. Our

conclusions are:

(B1) The performance in the continuous design is somewhat better than in the discrete design.

For some designs the pointwise results in Table 1 are better, but the integrated results are always

better in Table 3. Note that for the pointwise results the chosen point of evaluation x = 0 corresponds

to E[W j X = 0] = 100 and in Table 1 there is a point mass in the distribution of the bids at this

point.

(B2) The results for standard deviation estimation are in most cases better in Table 4 than in

Table 2.

(B3) The ranking of the estimators is the same in Table 3 as Table 1. Once again b�4 performs
the best in large samples.

7.2 Application

We examine a dataset used in An (2000), which is from a contingent valuation study conducted by

Hanemann et al. (1991) to elicit the WTP for protecting wetland habitats and wildlife in California�s

San Joaquin Valley. Each respondent was assigned a bid value. They were then also given a second

bid that was either higher or lower than the �rst, depending on their acceptance or rejection of

the �rst bid. The total number of bid values in this unfolding bracket design is 14: f25; 30; 40;
55; 65; 75; 80; 110; 125; 140; 170; 210; 250; 375g. The dataset consists of bid responses and some
personal characteristics of the respondents. The covariates X are age and number of years resident in

California, education and income bracket, and binary indicators of sex, race, and membership in an

environmental organization. The sample size, after excluding nonrespondents, incomplete responses,

etc., is n = 518. The marginal distribution of Y across �rst bids was Y 1 = 0:396 and across second

bids was Y 2 = 0:581; while V 1 = 132:4 and V 2 = 153:9: The second bid was more likely to receive a

yes response, which is consistent with the larger mean value of the bid size. The contingency table is
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Y2 = 1 Y2 = 0

Y1 = 1 131 74

Y1 = 0 170 143

This gives a chi-squared statistic of 4.68, which is to be compared with �20:05(1) = 3:84, so we reject

the hypothesis of independence across bids, although not strongly.

The individuals for whom either Y1 = 0 and Y2 = 1 or Y1 = 1 and Y2 = 0 reveal a bound on their

willingness to pay, because for these individuals we know their WTP lies between minfV1; V2g and
maxfV1; V2g: By selecting these 244 individuals we obtain that E(W ) lies in the interval [112:1; 187:1]:
This assumes that the �rst bids themselves do not in�uence the behaviour in the second round

through, e.g., framing or anchoring e¤ects. We provide some empirical evidence below that this

assumption may not hold in our data.

We �rst consider semiparametric speci�cations for W , in particular:

W = X>
i � � " and log(W ) = X>

i � � ";

som is linear and � is the identity or the exponential function, respectively. With these speci�cations

we estimate the quantity �w(x) = E(W j X = x) using our semiparametric estimators b�j(x);
j = 3; 4; 6. To check for possible framing e¤ects, we estimate this conditional mean WTP separately

using �rst bid data and second bid data. Given that �rst bids were drawn with close to equal

probabilites from a discrete distribution of bids, we assumed that the limiting design density h(V jX)
is uniform on the interval [Vmin; Vmax] (which is not a bad approximation).

In Table 5 we report the sample average of the estimates of E(W j X = Xi); denoted b�j;
j = 3; 4; 6; along with bootstrap con�dence intervals. The computation of b�j is exactly as described
in the simulation section.

Bid 1 Bid 2

Linear Log-Linear Linear Log-linearb�3 110:480
[101:3;126:0]

112:676
[106:4;126:0]

172:838
[154:3;202:3]

356:771
[317:3;631:3]b�4 105:611

[97:8;118:1]
104:674
[99:7;115:0]

246:059
[196:8;294:5]

715:210
[380:8;1810:4]b�6 . 99:653

[92:9;106:1]
99:653
[94:0;106:1]

143:041
[122:1;164:0]

143:041
[121:4;165:3]

Table 5: Estimates of WTP

Table 6 provides parameter estimates along with their 95% bootstrap con�dence intervals, and

asterisks indicating signi�cant departure from zero at the 5% level.
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Bid 1 Bid 2

Linear Log Linear Linear Log Linear

Y EARCA 0:3823
[�0:118;0:935]

0:0051
[�0:0011;0:01]

0:5382
[�1:24;1:97]

0:0096
[�0:008;0:03]

FEMALE 0:5560
[�12:540;11:75]

0:0105
[�0:14;0:15]

28:290
[�10:5;70:8]

0:5033�
[0:073;0:98]

ln(AGE) �13:591
[�37:31;8:78]

�0:159
[�0:5;0:12]

�31:714
[�98:9;32:7]

�0:6081
[�1:73;0:33]

EDUC �2:0237
[�4:98;0:72]

�0:0266
[�0:067;10:01]

1:2919
[�10:66;10:10]

0:0563
[�0:05;0:15]

WHITE 6:238
[�9:36;26:07]

0:0211
[�0:17;0:21]

60:2098�
[3:0;112:0]

0:5206�
[0:04;1:08]

ENV ORG 1:968
[�15:07;16:49]

0:0423
[�0:17;0:20]

34:8597
[�23:9;88:7]

0:0931
[�0:56;0:66]

ln(INCOME) 2:378
[�9:70;12:21]

0:0459
[�0:09;0:17]

40:4140�
[6:09;68:93]

0:2769
[�0:15;0:56]

Table 6

The estimated mean WTP based on only �rst bid data agree quite closely and the con�dence

intervals are quite narrow. Similar results were obtained for the sample median of fb�j(Xi)gni=1 and for
the estimates at the mean covariate value b�j(X): The results for the second bid data are rather erratic
and generally produce higher mean WTP values. This may be an indicator of framing, shadowing, or

anchoring e¤ects, in which hearing the �rst bid and replying to it a¤ects responses to later bids. See,

e.g., McFadden (1994), Green et al. (1998) and Hurd et al. (1998). These results may also be due

to small sample problems associated with the survey design, in particular, the distribution of second

bids di¤ers markedly from the distribution of �rst bids, including some far larger bid values. An

(2000), using a very di¤erent modeling methodology, tests and accepts the hypothesis of no framing

e¤ects in these data, though he does report some large di¤erences in coe¢ cient estimates based on

data using both bids versus just �rst bid data. Using di¤erent estimators and combining both �rst

and second bid data sets, An (2000) reports WTP at the mean ranging from 155 to 227 (plus one

outlier estimate of 1341), which may be compared to our estimates of 99 to 113 for �rst bid data and

143 to 715 using only second bids.

Finally, we conducted a purely nonparametric analysis with each of the four continuous covariates,

one at a time. In Figures 2 and 3 we provide the marginal smooths (b�1(Xi)) themselves along with a

pointwise 95% con�dence interval. In contrast to the semiparametric model which assumes a linear

or loglinear relationship, these �gures from the nonparametric estimator show some nonlinear e¤ects.
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Figure 2. First bid data. Marginal smooths b�1(Xi) with pointwise con�dence intervals with estimated

unconditional mean.
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Figure 3. Second bid data. Marginal smooths b�1(Xi) with pointwise con�dence intervals with estimated

unconditional mean.

8 Concluding Remarks

We have provided semiparametric and nonparametric estimators of conditional moments and quan-

tiles of the latent W . The estimators appear to perform well with both simulated and actual data.

We have for convenience assumed throughout that the limiting support of V is bounded. Most of

the results here should extend readily to the in�nite support case, although some of the estimators

may then require asymptotic trimming to deal with issues arising from division by a density estimate

when the true density is not bounded away from zero.

The results here show the importance, for both identi�cation and estimation, of experimental

designs in which the distribution of bids or test values V possesses at least a fair number of mass

points, and ideally is continuous. This should be taken as a recommendation to future designers

of contingent valuation experiments. The precision of the estimators also depends in part on the

distribution of test values. When designing experiments, one may wish to choose the limiting density

h to maximize e¢ ciency based on the variance estimators.

9 Appendix

9.1 Identi�cation With Discrete Bids

The consistency of our estimators shows that moments �r(x) = E[r(W;X) j X = x] are nonpara-

metrically identi�ed, given our assumption that as n ! 1, the distribution of V becomes dense

in the support of W . As discussed in the introduction, nonparametric identi�cation fails when the

limiting support of V is a �nite number of mass points, because the conditional distribution of

Y = I(W > V ) given X = x; V = v only identi�es the distribution of W jX = x at each support

point v in the support of V , while E[r(W;X) j X = x] depends on the distribution of W jX = x at

almost every support point w having a nonzero value of r(w; x).

To further motivate our choice of nonparametric identifying assumptions, we show now that if

the limiting support of V is a �nite number of mass points, then nonparametric identi�cation still

fails even given an additive independent error model for W , that is, W = m(X) � " with " ? X .

For simplicity in the proof it is assumed that X is a scalar, m is increasing in X, and V only takes

on two values, but the basic logic can be extended to more general cases.

Theorem 5. Assume supp(X) is some open or closed interval on the real line, supp(V ) =
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f��; 0g for some � > 0, and W = m(X) � " with " having an unknown, strictly monotonic CDF

F"(") and m strictly monotonically increasing in X. Assume V;X; " are mutually independent. Let

Y = I(W > V ). The functions m(x) and F"(") are not identi�ed given the distribution of Y

conditional on V;X.

Proof of Theorem 5. Since Y is binary, the distribution of Y given X and V is G(v j x) =
E[Y j X = x; V = v] = F"[m(x) � v]. Let �0 = inf[supp(X)], m0 = m(�0), and �j = m�1(m0 + j�)

for integers j. Let em(x) be any strictly monotonic function on x 2 [�0; �1] such that em(�0) = m0

and em(�1) = m0 + �. De�ne eF"(") on " 2 [m0;m0 + �] by eF"(") = G[0 j em�1(")]. Next, de�neeF"(") on " 2 (m0 + �;m0 + 2�] by eF"(") = G[� j em�1(" � �)], and de�ne em(x) on x 2 (�1; �2] byem(x) = eF�1" [G(0 j x)]. Now de�ne eF"(") on " 2 (m0+2�;m0+3�] by eF"(") = G[� j em�1("� �)], and
de�ne em(x) on x 2 (�2; �3] by em(x) = eF�1" [G(0 j x)]. Continue on in this way until the support of x
is exhausted By construction, the functions em and eF" satisfy G(v j x) = eF"[em(x)� v] for all x and

v on their support, and hence are observationally equivalent to m(x) and F"(").

Notes.

In this theorem, nothing can be identi�ed about the functionm(x) (except possibly its endpoints)

over the interval x 2 [�0; �1], since the observable data are consistent with m(x) equalling any regular
function over that interval, and the value of m(x) in any other interval is identi�ed only as a function

of its unknown values in [�0; �1].

The same proof could have been started by letting eF"(") be any regular function with the correct
endpoints on " 2 [m0;m0+ �], then recovering the corresponding em on that interval, and proceeding

as before. Therefore, the function eF" is also completely unknown (except possibly at endpoints) over
an initial interval, and it�s values elsewhere are only recoverable as functions of its values in that

interval.

The nonidenti�cation here is not just an issue of location or scale. The proof assumes m(x) may

be known at two points, m(�0) and m(�1), which is equivalent to knowing (or choosing) a location

and scale for m(x). Similarly, the proof may be started by assuming eF"(") is known at the two points
and " = m0 and " = m0+ �, which is equivalent to knowing (or choosing) a location and scale for eF .
These functions are therefore not identi�ed up to location and scale.

Here E[W j X = x] = m(x) � E("), so the nonidenti�cation of m(x) up to any location shows

nonidenti�cation of mean WTP. Other moments are likewise not identi�ed.

This theorem can be applied to show nonidenti�cation of other closely related models. In partic-

ular, it implies nonidenti�cation of the nonparametric ordered choice model Y = jI(�j < m(x)�" �
aj+1) for a set of integers j and threshold constants �j (two of which can be normalized to zero and

one to pin down the location of " and the scaling of both " and m) It also shows nonidenti�cation
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of the model considered by Das (2002), in which W = m(x) � " and one only observes which of a

few di¤erent �xed intervals each observation W lies in. With a partial parameterization, this model

is what An (2000) and others call a double bounded dichotomous choice.

It follows from the consistency of our estimator b�4r(x) (with, e.g., � estimated using Klein and
Spady 1993) that this model can be identi�ed with a �xed discrete design V if m(x) above is para-

meterized as m(x; �) with a known function m and �nite parameter vector �. In this semiparametric

speci�cation, continuity of X takes the place of continuity of V .

The implications of Theorem 5 for bid design di¤er markedly from results on optimal bid design in

parametric or semiparametric models. Summarizing Kanninen (1993), Crooker and Herriges (2004)

say, in refering to parametric or semiparametric models �estimates of the mean WTP are best with

relatively few bid levels.�

Some existing estimators implicitly assume identi�cation, such as the sieve estimators proposed

by Chen and Randall (1997) and Das (2002), which they apply to data in which v can only take on

a �nite number of values. Theorem 5 shows that such models are generally not identi�ed.13

9.2 Distribution Theory for Nonparametric Estimators

Proof of Theorem 2. The properties of b�1r(x) are more or less standard, because Vi is part
of the variable being smoothed. The only di¤erence is the triangular array nature of the sampling

scheme, but given the conditions we made on the way this distribution changes with n, the limiting

distribution H(vjx) can replace H(vjx; n) with error of smaller order than the leading term.
We now turn to b�2r(x): First, we introduce some notation to de�ne the local polynomial estimatorbG(v j x): Following the notation of Masry (1996a,b), let N` = (`+d�1)!=`!(d�1)! be the number of

distinct d-tuples j with jjj = `. Arrange theseN` d-tuples as a sequence in a lexicographical order and

let ��1` denote this one-to-one map. De�ne eXi = (Vi; Xi) and ex = (v; x); and write bG(v j x) = bG(ex)
and G(v j x) = G(ex) for short. We have bG(ex) = e>1M

�1
n 	n; where e1 = (1; 0; : : : ; 0)

> is the vector

with the one in the �rst position, Mn(ex) and 	n(ex) are symmetric N �N (N =
Pp�1

`=0 N`�1) matrix
and N � 1 dimensional column vector respectively and are de�ned as

Mn(ex) =
2664

Mn;0;0(ex) : : : Mn;0;p�1(ex)
...

. . .
...

Mn;p�1;0(ex) � � � Mn;p�1;p�1(ex)
3775 ; 	n(ex) =

2664
	n;0(ex)
...

	n;p�1(ex)
3775 ;

13Their estimators essentially smooth between the di¤erent available test values v to obtain results with uncertain
limiting values. Our nonparametric estimators also smooth between test values in an analogous way, but consistency
is obtained by having the available bids become dense in the support of W . Crooker and Herriges� (2000) monte
carlo design, which we also use, employs this feature of an increasingly �ne grid of test values. An (2000) provides a
semiparametric model that identi�es and estimates the W distribution only at the available bid levels, and explicitly
interpolates these estimates to obtain a generally inconsistent estimate of W at the mean.
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where Mn;jjj;jkj(ex) is a Njjj �Njkj dimensional submatrix with the (l; r) element given by

�
Mn;jjj;jkj

�
l;r
=

1

nbd

nX
i=1

 ex� eXi

b

!�jjj(l)+�jkj(r) eK  ex� eXi

b

!
;

and 	n;jjj(ex) is a Njjj dimensional subvector whose r-th element is given by
�
	n;jjj

�
r
=

1

nbd

nX
i=1

 ex� eXi

b

!�jjj(r) eK  ex� eXi

b

!
Yi:

We can write bG(ex)�G(ex) = e>1M
�1
n (ex)Un(ex) + e>1M

�1
n (ex)Bn(ex): (18)

The stochastic term Un(ex) and the bias term Bn(ex) are N � 1 vectors

Un(ex) =
2664

Un;0(ex)
...

Un;p�1(ex)
3775 ; Bn(ex) =

2664
Bn;0(ex)
...

Bn;d(ex)
3775 ;

where Un;l(ex) and Bn;l(ex) are de�ned similarly as 	n;l(ex) so that Un;jjj(ex) and Bn;jjj(ex) are a Njjj
dimensional subvectors whose r-th elements are given by:

�
Un;jjj

�
r
=

1

nbd

nX
i=1

 ex� eXi

b

!�jjj(r) eK  ex� eXi

b

!
"i

�
Bn;jjj

�
r
=

1

nbd

nX
i=1

 ex� eXi

b

!�jjj(r) eK  ex� eXi

b

!
�i(ex);

where �i(ex) = G( eXi)� 1
k!

P
0�jkj�p�1(D

kG)(ex)( eXi � ex)k; while "i = Yi � E(Yij eXi) are independent

random variables with conditional mean zero and uniformly bounded variances.

The argument is similar to Fan, Mammen, and Härdle (1998, Theorem 1); we just sketch out

the extension to our quasi-discrete case. The �rst part of the argument is to derive a uniform

approximation to the denominator in (18). We have

sup
v2[�0(x);�1(x)]

jMn(v; x)� E[Mn(v; x)]j = Op(an); (19)

where an =
p
log n=nbd+1: The justi�cation for this comes fromMasry (1996a, Theorem 2). Although

he assumed continuous density, it is clear from the proofs that the argument goes through in our

case. Discreteness of Vi only a¤ects the bias calculation. We calculate E[Mn(v; x)]; for simplicity
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just the upper diagonal element

E eKb(ex� eXi)

=

Z
kb(v � v0)Kb (x� x0) dH(v0; x0jn)

=

Z
kb(v � v0)Kb (x� x0) dH(v0; x0) +

Z
kb(v � v0)Kb (x� x0) [dH(v0; x0jn)� dH(v0; x0)] :

Then using integration by parts for Lebesgue integrals (Carter and van Brunt (2000, Theorem 6.2.2.),

for large enough n we haveZ �1(x)

�0(x)

kb(v � v0) [dH(v0jx0; n)� dH(v0jx0)] = � 1
b2

Z �1(x)

�0(x)

k0
�
v � v0

b

�
[H(v0jx0; n)�H(v0jx0)]dv0;

since the function k is continuous everywhere and the boundary term

�kH([�0(x); �1(x)]) = kb(v � �1(x)) [H(�1(x)jx0; n)�H(�1(x)jx0)]

�kb(v � �0(x)) [H(�0(x)jx0; n)�H(�0(x)jx0)] = 0

for large enough n; where �kH(A) denotes the H�measure of the set A. Therefore, by the law of
iterated expectation for some constant C <1;����Z kb(v � v0)Kb (x� x0) [dH(v0; x0jn)� dH(v0; x0)]

����
=

����Z kb(v � v0)Kb (x� x0) [dH(v0jx0; n)� dH(v0jx0)] dH(x0)
����

=

���� 1b2
Z
k0
�
v � v0

b

�
[H(v0jx0; n)�H(v0jx0)] dv0Kb (x� x0) dH(x0)

����
� sup

v0
sup

jx0�xj�b
jH(v0jx0; n)�H(v0jx0)j � 1

b2

Z
jk0
�
v � v0

b

�
jdv0 �

Z
jKb (x� x0)j dH(x0)

� C

 
1

b
sup
v0

sup
jx0�xj�b

jH(v0jx0; n)�H(v0jx0)j
!Z

jk0(t)jdt
Z
jK (u)j du� sup

jx0�xj�b
h(x0) = Op(J

�1b�1);

by the integrability and smoothness on k: The right hand side does not depend on v so the bound is

uniform.

For each j with 0 � jjj � 2(p� 1) , let �j( eK) = RRd+1 uj eK(u)du; �j( eK) = RRd+1 uj eK2(u)du; and
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de�ne the N �N dimensional matrices M and � and N � 1 vector B; where N =
Pp�1

`=0 N` � 1, by

M =

2666664
M0;0 M0;1 � � � M0;p�1

M1;0 M1;1 � � � M1;p�1
...

...

Mp�1;0 Mp�1;1 � � � Mp�1;p�1

3777775 ; � =
2666664

�0;0 �0;1 � � � �0;p�1

�1;0 �1;1 � � � �1;p�1
...

...

�p�1;0 �p�1;1 � � � �p�1;p�1

3777775 ; B =

2666664
M0;p

M1;p

...

Mp�1;p

3777775 ;
whereMi;j and �i;j areNi�Nj dimensional matrices whose (`;m) element are, respectively, ��i(`)+�j(m)
and ��i(`)+�j(m). Note that the elements of the matrices M =M( eK) and � = �( eK) are simply mul-
tivariate moments of the kernel eK and eK2, respectively.

Under the smoothness conditions on h(v; x) we have for all j; k; l; r

1

bd

Z �ex� ex0
b

��jjj(l)+�jkj(r) eK �ex� ex0
b

�
dH(v0; x0) = h(v; x)

�
Mjjj;jkj

�
l;r
+O(b)

uniformly over v: Therefore,

Mn(ex) = h(ex)M +Op(cn); (20)

where cn = an + b+ J
�1b�1; and the error is uniform over v in the support of H(vjx; n): There is an

additional term here of order J�1b�1 due to the discreteness: This term is of small order under our

conditions.

Then e>1M
�1
n (ex)Un(ex) = e>1M

�1Un(ex)=h(ex) + rem(ex);where rem(ex) is a remainder term that is

op(n
�1=2b�(d+1)=2): By similar arguments we obtain e>1M

�1
n (ex)Bn(ex) = bp�(ex)+rem(ex); where rem(ex)

is a remainder term that is op(bp) and �(ex) = e>1M
�1BG(p+1)(ex): Therefore, we obtain

bG(ex)�G(ex) = 1

h(ex)e>1M�1Un(ex) + bp�(v; x) + rem(ex);
where rem(ex) is a remainder term that is op(n�1=2b�(d+1)=2) + op(bp): We next substitute the leading

terms into b�2r(x), and recall that
b�2r(x)� �r(x) =

Z �1(x)

�0(x)

r0(v; x)[ bG(v j x)�G(v j x)]dv:

The standard integration argument along the lines of Fan, Mammen, and Härdle (1998) shows that

the term rem(ex) can be ignored, and we obtain
b�2r(x)� �r(x) = e>1M

�1Un(x) + bp�(x) + op(n
�1=2b�d=2);

where �(x) =
R
�(v; x)d�(v); while Un(x) is an N � 1 vector

Un(x) =

2664
Un;0(x)
...

Un;p(x)

3775 ;
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where Un;jjj(x) is an Njjj dimensional subvector whose r-th elements are given by:

�
Un;jjj

�
r
=

Z
u�

v
jjj(r)k(u)du

1

nbd

nX
i=1

�
x�Xi

b

��xjjj(r)
K

�
x�Xi

b

�
r0(Vi; x)

h(Vi; x)
"i:

We can write

e>1M
�1Un(x) =

1

nbd

nX
i=1

Ld;p

�
x�Xi

b

�
r0(Vi; x)

h(Vi; x)
"i; where

Ld;p

�
x�Xi

b

�
= e>1M

�1

2664
...R

u�
v
jjj(r)k(u)du

�
x�Xi
b

��xjjj(r)K �x�Xi
b

�
...

3775 :
Under our conditions

E

"�
r0(Vi; x)

h(Vi; x)

�2
�2(Vi; Xi)jXi = x

#

=

Z �
r0(v; x)

h(v; x)

�2
�2(v; x)dH(vjx; n)

=

Z �
r0(v; x)

h(v; x)

�2
�2(v; x)dH(vjx) +

Z �
r0(v; x)

h(v; x)

�2
�2(v; x) [dH(vjx; n)� dH(vjx)]

=

Z �
r0(v; x)

h(v; x)

�2
�2(v; x)dH(vjx) + o(1):

It follows that the asymptotic variance of b�2r(x) is
1

nbd
E

"
1

bd
L2d;p

�
x�Xi

b

��
r0(Vi; x)

h(Vi; x)

�2
�2(Vi; Xi)

#

=
1

nbd

"Z
1

bd
L2d;p

�
x�X

b

��
r0(V; x)

h(V; x)

�2
�2(V;X)dH(V jX)dH(X) + o(1)

#

' 1

nbd
kLd;pk2

Z
�2(v; x)

�
r0(v; x)

h(v; x)

�2
h(v; x)dv;

by a change of variables and dominated convergence and taking account of the discreteness error.

Furthermore, the central limit theorem holds by the arguments used in Gozalo and Linton (1999,

Lemma CLT) and is not a¤ected by the discreteness of V . The quantity kLd;pk2 can also be de�ned
in terms of the basic kernel k:

The properties of

b�0r(x) = �Z �1(x)

�0(x)

r(v; x)
@ bG(v j x)

@v
dv (21)

35



follow similarly. We have

@ bG(v j x)
@v

� @G(v j x)
@v

= e>vM
�1
n� (ex)Un�(ex) + e>1M

�1
n� (ex)Bn�(ex);

where e>v = (0; 1; : : : ; 0) and Mn�(ex); Un�(ex); and Bn�(ex) are like Mn(ex); Un(ex); and Bn(ex) except
that they are for one order higher polynomial. Essentially the same integration argument applies to

the stochastic part. The bias term arguments are the same except that p is replaced by p+ 1

9.3 Distribution Theory for Semiparametric Quantities

Let Ei denote expectation conditional on Zi: In the proofs of Theorems 3 and 4 we make use of

Lemmas 1 and 2 given below. De�ne

�j(u; �) = h[�(m(Xj; �)� u)jXj]�
0(m(Xj; �)� u)

and  �(u) = E�j(u; �) with  (u) =  �0(u): Then, interchanging di¤erentiation and integration

(which is valid under our conditions) we have

 0(u) = E
@�j(u; �0)

@u
= �E

��
h0(�jXj)(�

0)2 + h(�jXj)�
00� (m(Xj; �0)� u)

�
: (22)

Proof of Theorem 3. Recall that

b�3r(x) = r[�(m(x;b�)); x] + 1

n

nX
i=1

r0[�(m(x;b�)� bUi); x]�0(m(x;b�)� bUi)[Yi � 1(bUi > 0)]b (bUi) ;

where bUi = m(Xi;b�)� ��1(Vi) and
b (bUi) = 1

n

nX
j=1

h[�(m(Xj;b�)� bUi)jXj]�
0(m(Xj;b�)� bUi)) = 1

n

nX
j=1

�j(bUi;b�):
By a geometric series expansion of 1=b (bUi) about 1= (Ui) we can write

b�3r(x) =
1

n

nX
i=1

f1(Zi;b�)� 1

n

nX
i=1

f2(Zi; �0)[b (bUi)�  (Ui)] (23)

� 1
n

nX
i=1

[f2(Zi;b�)� f2(Zi; �0)][b (bUi)�  (Ui)] (24)

+
1

n

nX
i=1

r0[�(m(x;b�)� bUi); x]�0(m(x;b�)� bUi)[Yi � 1(bUi > 0)]
 2(Ui)b (bUi) [b (bUi)�  (Ui)]

2; (25)

where

f2(Zi; �) =
r0[�(m(x; �)� Ui(�)); x]�

0(m(x; �)� Ui(�)))[Yi � 1(Ui(�) > 0)]
 2(Ui)

:
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The leading terms are derived from (23), while (24) and (25) contain remainder terms.

Leading Terms. Lemma 1 implies that

1p
n

nX
i=1

[f1(Zi;b�)� Ef1(Zi; �0)] =
1p
n

nX
i=1

f�F &(Zi; �0) + [f1(Zi; �0)� Ef1(Zi; �0)]g+ op(1); (26)

where Ef1(Zi; �0) = �r(x); and f1(Zi; �0)�Ef1(Zi; �0)] = f0(Zi; �0)�Ef0(Zi; �0)] due to the cancel-
lation of the common term r[�(m(x; �0)); x]: The stochastic equicontinuity condition of Lemma 1 is

veri�ed in a separate appendix, see below.

Let L(Zi; Zj) = �j(Ui) + �(Zi)&(Zj; �0); and

�j(u) = �j(u; �0)� E�j(u; �0)

�(Zi) = Ei

�
� ij
@m(Xj; �0)

@�

�
� Ei[� ij]

@m(Xi; �0)

@�
; where � ij = �

@�j(Ui; �0)

@u
:

Note that Ei[�j(Ui)] = 0 but Ej[�j(Ui)] 6= 0:We �rst approximate n�1
Pn

i=1 f2(Zi; �0)[
b (bUi)� (Ui)]

by n�2
Pn

i=1

Pn
j=1 f2(Zi; �0)L(Zi; Zj): Speci�cally, by Lemma 2 and the fact that Ejf2(Zi; �0)j <1,

we have ����� 1n
nX
i=1

f2(Zi; �0)[b (bUi)�  (Ui)�
1

n

nX
j=1

L(Zi; Zj)]

�����
� 1

n

nX
i=1

jf2(Zi; �0)j � max
1�i�n

�����[b (bUi)�  (Ui)�
1

n

nX
j=1

L(Zi; Zj)]

�����
= op(n

�1=2):

Next, letting 'n(z1; z2) = n�2f2(z1; �0)L(z1; z2) we have

1

n2

nX
i=1

nX
j=1

f2(Zi; �0)L(Zi; Zj) =

nX
i=1

nX
j=1

'n(Zi; Zj);

which can be approximated by a second order U-statistic as follows. Letting pn(z1; z2) = n(n �
1)['n(z1; z2) + 'n(z2; z1)]=2 we have

Qn =
nX
i=1

nX
j=1

'n(Zi; Zj) =

�
n

2

��1 n�1X
i=1

nX
j=i+1

pn(Zi; Zj) + op(n
�1=2);

since
Pn

i=1 'n(Zi; Zi) = op(n
�1=2): Now pn is a symmetric kernel, i.e., pn(z1; z2) = pn(z2; z1) and we

can apply Lemma 3.1 of Powell, Stock, and Stoker (1989). Letting

bQn =
2

n

nX
j=1

!n(Zj); where !n(Zi) = Ei [pn(Zi; Zj)] ;
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we have
p
n(Qn � bQn) = op(1): It remains to �nd !n(Zi): We have

2!n(Zi) = E [f2(Zj; �0)�(Zj)] &(Zi; �0) + Ei [f2(Zj; �0)�i(Uj)]

because Ei[L(Zi; Zj)] = 0: Furthermore,

Ej
�
f2(Zi; �0)�j(Ui)

�
= Ej

�
f2(Zi; �0)[�j(Ui; �0)� Ei�j(Ui; �0)]

�
= Ej

�
f0(Zi; �0)

[�j(Ui; �0)�  (Ui)]

 (Ui)

�
:

E [f2(Zi; �0)�(Zi)] = E

�
f2(Zi; �0)

�
Ei

�
� ij
@m(Xj; �0)

@�

�
� Ei[� ij]

@m(Xi; �0)

@�

��

= E

�
f0(Zi; �0)

 (Ui)
� ij

�
@m(Xj; �0)

@�
� @m(Xi; �0)

@�

��
:

Writing � ij = Ei� ij + � ij � Ei� ij; where Ei� ij = � 0(Ui); we have

E

�
f0(Zi; �0)

 (Ui)
� ij

�
@m(Xj; �0)

@�
� @m(Xi; �0)

@�

��

= E

�
f0(Zi; �0)

 0(Ui)

 (Ui)

�
@m(Xi; �0)

@�
� E

�
@m(Xi; �0)

@�

���
+E

�
f0(Zi; �0)

 (Ui)

�
� ij � Ei� ij

	�@m(Xj; �0)

@�
� E

�
@m(Xj; �0)

@�

���
:

Therefore,

bQn = E

�
f0(Zi; �0)

 0(Ui)

 (Ui)
ei + f0(Zi; �0)

 (Ui)
e� ijej� 1n

nX
j=1

&(Zj; �0) (27)

+
1

n

nX
j=1

Ej

�
f0(Zi; �0)

[�j(Ui; �0)�  (Ui)]

 (Ui)

�
:

We have shown that n�1
Pn

i=1 f2(Zi; �0)[
b (bUi)� (Ui)] = bQn+ op(n

�1=2); where bQn is given in (27).

This concludes the analysis of the leading terms.

Remainder Terms. By the Cauchy-Schwarz inequality����� 1n
nX
i=1

[f2(Zi;b�)� f2(Zi; �0)][b (bUi)�  (Ui)]

�����
�

 
1

n

nX
i=1

[f2(Zi;b�)� f2(Zi; �0)]
2

!1=2 
1

n

nX
i=1

[b (bUi)�  (Ui)]
2

!1=2

= Op(n
�1)
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from another application of Lemmas 1 and 2:

Therefore,����� 1n
nX
i=1

r0[�(m(x;b�)� bUi); x]�0(m(x;b�)� bUi)[Yi � 1(bUi > 0)]
 2(Ui)b (bUi) [b (bUi)�  (Ui)]

2

�����
� supu2U [b (u)�  (u)]2 + op(n

�1=2)

infu2U  
3(u) + op(1)

1

n

nX
i=1

jr0[�(m(x;b�)� bUi); x]�0(m(x;b�)� bUi)j � (jYij+ 1)
= op(n

�1=2):

This result used the fact that min1�i�n b (bUi) � infu2U  (u) + op(1); which is proved in Lemma 2.

Also infu2U  (u) > 0:

In conclusion,
p
n[b�3r(x)��r(x; �0)] = n�1=2

Pn
i=1 �i+ op(1); as required. The asymptotic distri-

bution of
p
n[b�3r(x)��r(x)] follows from the central limit theorem for independent random variables

with �nite variance.

Proof of Theorem 4. By a geometric series expansion we can write

b��4r(x;b�) =
1

n

nX
i=1

f1(Zi;b�)� 1

n

nX
i=1

f2(Zi; �0)[e (bUi)�  (Ui)] (28)

� 1
n

nX
i=1

[f2(Zi;b�)� f2(Zi; �0)]� [e (bUi)�  (Ui)] (29)

+
1

n

nX
i=1

r0[�(m(x;b�)� bUi); x]�0(m(x;b�)� bUi)[Yi � 1(bUi > 0)]
 2(Ui)e (bUi) [e (bUi)�  (Ui)]

2:(30)

The leading terms in this expansion are derived from (28), while (29) and (30) contain remainder

terms.

Leading Terms. We make use of Lemma 3 given below. The term n�1
Pn

i=1 f1(Zi;
b�) has already

been analyzed above. By Lemma 3 we have with probability tending to one for some function d(.)

with �nite r moments����� 1n
nX
i=1

f2(Zi; �0)

"e (bUi)�  (Ui)�
1

n

nX
j=1

L�(Zi; Zj)

#����� � 1

nb3

 
1

n

nX
i=1

jf2(Zi; �0)jd(Xi)

!

= Op(n
�1b�3): (31)

where L�(Zi; Zj) = b�1k((Ui � Uj)=b)�  (Ui) + �
�(Zi) � &(Zj; �0) and
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��(Zi) =  (Ui)

�
 0(Ui)

 (Ui)

�
@m

@�>
(Xi; �0)� E

�
@m

@�>
(Xi; �0) j Ui

��
�m0

�(Ui)

�
:

Under our bandwidth conditions, the right hand side of (31) is op(n�1=2).

Next,
1

n

nX
i=1

f2(Zi; �0)
1

n

nX
j=1

L�(Zi; Zj) =

nX
i=1

nX
j=1

'n(Zi; Zj)

where

'n(Zi; Zj) =
1

n2
f2(Zi; �0)

�
1

b
k

�
Ui � Uj

b

�
�  (Ui) + �

�(Zi) � &(Zj; �0)
�
:

Note that

Ei'n(Zi; Zj) =
1

n2
f2(Zi; �0)

�Z
1

b
k

�
Ui � u

b

�
 (u)du�  (Ui)

�
=

1

n2
f2(Zi; �0)

�Z
k(t) (t+ Uib)dt�  (Ui)

�
= Op(n

�2b2)

uniformly in i. De�ne f 2(Ui) = E[f2(Zi; �0)jUi]: Then by iterated expectation

n2Ej'n(Zi; Zj) = E

�
f 2(Ui)

1

b
k

�
Ui � Uj

b

��
� E

�
f 2(Ui) (Ui)

�
+ E [f2(Zi; �0)�

�(Zi)] � &(Zj; �0);

where, using integration by parts, a change of variable, and dominated convergence,

E

�
f 2(Ui)

1

b
k

�
Ui � Uj

b

��
=

Z
f 2(u)

1

b
k

�
u� Uj
b

�
 (u)du = f 2(Uj) (Uj) +Op(b

2)

uniformly in i. Note that f 2(Uj) (Uj) = f 0(Uj) = E[f0(Zj; �0)jUj]. Furthermore,

E [f2(Zi; �0)�
�(Zi)] = E

�
f0(Zi; �0)

�
 0(Ui)

�
i

 (Ui)
� m0

�(Ui)

 (Ui)

��

= E

�
 0(Ui)

 (Ui)

�
f0(Zi; �0)� f 0(Ui)

	
�i

�
� E

�
f 0(Ui)

m0
�(Ui)

 (Ui)

�
by substituting in for f2 and decomposing f0(Zi; �0) = f 0(Ui) + f0(Zi; �0)� f 0(Ui). Using the same

U-statististic argument as in the proof of Theorem 3 we obtain

1

n2

nX
i=1

f2(Zi; �0)
nX
j=1

L�(Zi; Zj) =
1

n

nX
j=1

!n(Zj) + op(n
�1=2);

where !n(Zj) = f 0(Uj)� E[f 0(Uj)] + E [f2(Zi; �0)�
�(Zi)] &(Zj):

Remainder Terms. First,
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����� 1n
nX
i=1

[f2(Zi;b�)� f2(Zi; �0)][e (bUi)�  (Ui)]

�����
�

 
1

n

nX
i=1

[f2(Zi;b�)� f2(Zi; �0)]
2

!1=2 
1

n

nX
i=1

[e (bUi)�  (Ui)]
2

!1=2
= op(n

�1=2):

Second ����� 1n
nX
i=1

r0[�(m(x;b�)� bUi); x]�0(m(x;b�)� bUi)[Yi � 1(bUi > 0)]
 2(Ui)e (bUi) [e (bUi)�  (Ui)]

2

�����
� supu2U [e (u)�  (u)]2 + op(n

�1=2)

infu2U  
3(u) + op(1)

1

n

nX
i=1

jr0[�(m(x;b�)� bUi); x]�0(m(x;b�)� bUi)j � (jYij+ 1)
= op(n

�1=2):

This result used the fact that min1�i�n e (bUi) � infu2U  (u)+ op(1), which is proved in Lemma 3.
9.4 Subsidiary Results

De�ne Fn(�) = n�1
Pn

i=1 f(Zi; �) for some function f; and let F (�) = EFn(�) and �F = @F (�0)=@�:

Lemma 1. Assume:

(i) For some vector &
p
n(b� � �0) =

1p
n

nX
i=1

&(Zi; �0) + op(1)

where E[&(Zi; �0)] = 0 and 
 = E[&(Zi; �0)&(Zi; �0)
>] <1:

(ii) There exists a �nite matrix �F of full (column) rank such that

lim
k���0k!0

kF (�)� �F (� � �0)k
k� � �0k

= 0:

(iii) For every sequence of positive numbers f�ng such that �n ! 0;

sup
k���0k��n

pn[Fn(�)� F (�)]�
p
n[Fn(�0)� F (�0)]

 = op(1):

Then
p
n[Fn(b�)� F (�0)]=) N(0; V ); where

V = var[�F &(Zi; �0) + f(Zi; �0)] = �F
�F
> + var[f(Zi; �0)] + 2�FE&(Zi; �0)f(Zi; �0):
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See below for a discussion on the veri�cation of (iii).

Proof: Since b� is root-n consistent, there exists a sequence �n ! 0 such that Pr[jj
p
n(b�� �0)jj >

�n] ! 0 as n ! 1: We can therefore suppose that jj
p
n(b� � �0)jj � �n with probability tending to

one. We have
p
n[Fn(b�)� F (�0)] =

p
n[F (b�)� F (�0)] +

p
n[Fn(b�)� F (b�)]

= �F
p
n(b� � �0) +

p
n[Fn(�0)� F (�0)] + o(k[

p
n(b� � �0)k)

+
p
nf[Fn(b�)� F (b�)]� [Fn(�o)� F (�0)]g

= �F
p
n(b� � �0) +

p
n[Fn(�0)� F (�0)] + op(1)[by (ii) and (iii)]

=
1p
n

nX
i=1

f�F &(Zi; �0) + [f(Zi; �0)� Ef(Zi; �0)]g+ op(1);

and the result now follows from standard CLT for independent random variables.

Lemma 2. Suppose that assumptions C1-C3 hold. Then, as n!1

max
1�i�n

�����b (bUi)�  (Ui)�
1

n

nX
j=1

L(Zi; Zj)

����� = op(n
�1=2) (32)

max
1�i�n

����� 1n
nX
j=1

L(Zi; Zj)

����� = Op(n
�1=2) (33)

min
1�i�n

b (bUi) � inf
u2U

 (u) + op(1) (34)

where L(Zi; Zj) = �j(Ui) + �(Zi)&(Zj; �0); and

�(Zi) = Ei

�
� ij
@m(Xj; �0)

@�

�
� Ei[� ij]

@m(Xi; �0)

@�
:

�j(Ui) = h(�jXj)�
0(m(Xj; �0)� Ui)� Ei [h(�jXj)�

0(m(Xj; �0)� Ui)]

� ij = E
��
h0(�jXj)(�

0)2 + h(�jXj)�
00� (m(Xj; �0)� Ui)

�
:

Proof. Regarding (33), the pointwise rate follows by standard central limit theorem for each

Zi = z: we have EL(z; Zj) = 0 for each z and supz varL(z; Zj) < 1: Then because the function

L(z; Zj) is bounded Lipschitz, the uniformity over z follows from FCLT.

Result (34) follows by an application of the triangle inequalitymin1�i�n  (Ui) � min1�i�n b (bUi)+
max1�i�n jb (bUi) �  (Ui)j; and the fact that max1�i�n jb (bUi) �  (Ui)j = op(1) as a consequence of

(32) and (33).
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Before showing (32) we show that:

max
1�i�n

bUi � max
1�i�n

Ui + op(1) (35)

min
1�i�n

bUi � min
1�i�n

Ui + op(1); (36)

from which it follows that we can ignore the possibility that bUi lies outside of the support of Ui; i.e.,
for any event A

Pr [A] � Pr
h
A and fbU1; : : : ; bUng � Ui+ Pr hbUj =2 U for some ji

� Pr
h
A and fbU1; : : : ; bUng � Ui+ o(1) = o(1): (37)

Proof of (35). We have bUi = Ui +
@m

@�
(Xi; �)(b� � �0)

by the mean value theorem, where � are intermediate values between b� and �0: Since b� is root-
n consistent, there exists a sequence �n ! 0 such that Pr[jjb� � �0jj � �n] ! 0: Therefore, with

probability tending to one

j@m
@�
(Xi; �)j � sup

jj���0jj��n
j@m
@�
(Xi; �)j � d1(Xi):

Furthermore, applying the Bonferroni and Markov inequalities

Pr

�
max
1�i�n

d1(Xi) > �
p
n

�
� nPr

�
d1(Xi) > �

p
n
�
� n

Edr1(Xi)

(�
p
n)
r = o(1)

for any � > 0 when r > 2: This yields (35); (36) follows similarly.

We next prove (32). De�ne the stochastic process in �

b (Ui(�)) = 1

n

nX
j=1

�j(Ui(�); �):

Then by Taylor expansion

b (bUi)� b (Ui) = 1

n

nX
j=1

@�j(Ui(�0); �0)

@�>
(b� � �0) +Rni; (38)

where the derivative inside the summation is a total derivative de�ned below, while

Rni =
1

2n

nX
j=1

(b� � �0)
>@

2�j(Ui(�); �)

@�@�>
(b� � �0);
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where � are intermediate values between b� and �0, while:
@�j(Ui(�); �)

@�
=

�
h0(�jXj)(�

0)2 + h(�jXj)�
00� (m(Xj; �)� Ui(�))

�
@m(Xj; �)

@�
� @m(Xi; �)

@�

�
@2�j(Ui(�); �)

@�@�>
=

�
h00(�jXj)(�

0)3 + 3h0(�jXj)�
0�00 + h(�jXj)�

000� (m(Xj; �)� Ui(�))

�
�
@m(Xj; �)

@�
� @m(Xi; �)

@�

� �
@m(Xj; �)

@�
� @m(Xi; �)

@�

�>
+
�
h0(�jXj)(�

0)2 + h(�jXj)�
00� (m(Xj; �)� Ui(�))

�
@2m(Xj; �)

@�@�>
� @2m(Xi; �)

@�@�>

�
:

Applying (37) we have in (38) that with probability tending to one

jRnij � jjb� � �0jj2 �
1

n

nX
j=1

sup
jj���0jj��n

@2�j(Ui(�); �)@�@�>

 � Op(n
�1)� 1

n

nX
j=1

D(Xi; Xj)

for some measurable function D with �nite mean. Therefore, max1�i�n jRnij = op(n
�1=2): We then

show that

max
1�i�n

����� 1n
nX
j=1

@�j(Ui(�0); �0)

@�>
� Ei

�
@�j(Ui(�0); �0)

@�>

������ = op(1):

The pointwise limit follows by the law of large numbers, and the uniformity is obtained by another

application of the Bonferroni and Markov inequalities. Therefore, uniformly in i

b (bUi)� b (Ui) = Ei

�
@�j(Ui(�0); �0)

@�>

�
(b� � �0) + op(n

�1=2):

We have

Ei

�
@�j(Ui(�0); �0)

@�>

�
= Ei

�
� ij
@m(Xj; �0)

@�

�
� Ei[� ij]

@m(Xi; �0)

@�
:

This is because by the chain rule

@�j(Ui(�0); �0)

@�
=

@�j(u; �)

@�

???y
�=�0;u=Ui(�0)

+
@�j(u; �0)

@u

???y
�=�0;u=Ui(�0)

@Ui(�)

@�

???y
�=�0

= �
@�j(u; �0)

@u

???y
�=�0;u=Ui(�0)

�
@m(Xj; �0)

@�
� @m(Xi; �0)

@�

�
;

where @�j(u; �0)=@u was de�ned in (22).

Lemma 3. Suppose that assumptions C1-C4 hold. Then with probability tending to one for some
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function d with �nite r moments:

max
1�i�n

�����e (bUi)�  (Ui)�
1

n

nX
j=1

L�(Zi; Zj)

����� � k

nb3
d(Xi) (39)

max
1�i�n

����� 1n
nX
j=1

L�(Zi; Zj)

����� = Op

(�
log n

nb

�1=2)
+Op(b

2) (40)

min
1�i�n

e (bUi) � inf
u2U

 (u) + op(1) (41)

where

L�(Zi; Zj) =
1

b
k

�
Ui � Uj

b

�
�  (Ui) + �

�(Zi) � &(Zj; �0)

��(Zi) =  0(Ui)

�
@m

@�>
(Xi; �0)� E

�
@m

@�>
(Xi; �0) j Ui

��
�  (Ui)m

0
�(Ui):

Proof. De�ne

 (Ui) =
1

nb

nX
j=1

k

�
Ui � Uj

b

�
:

Making a second order Taylor series expansion we have

e (bUi)�  (Ui) = Tni +Rni; (42)

where

Tni =  (Ui)�  (Ui) +
1

nb2

nX
j=1

k0
�
Ui � Uj

b

��
@m

@�>
(Xi; �0)�

@m

@�>
(Xj; �0)

�
(b� � �0)

Rni =
1

2nb3

nX
j=1

k00
�
U�i � U�j

b

��
@m

@�
(Xi; �0)�

@m

@�
(Xj; �0)

�
(b� � �0)(b� � �0)

>

�
�
@m

@�
(Xi; �0)�

@m

@�
(Xj; �0)

�>
+
1

nb2

nX
j=1

k0
�
Ui � Uj

b

�
(b� � �0)

>
�
@2m

@�@�>
(Xi; �

�)� @2m

@�@�>
(Xj; �

�)

�
(b� � �0);

where �� are intermediate values between b� and �0; and U�i = Ui(�
�):

We �rst show that the remainder terms are of smaller order. We have with probability tending

to one

jRnij � b�3 sup
u
jk00(u)j � jjb� � �0jj2 �

 @m@� (Xi; �0)

2 + 1

n

nX
j=1

@m@� (Xj; �0)

2
!

+b�1jjb� � �0jj2 �
1

nb

nX
j=1

����k0�Ui � Uj
b

����� (d1(Xi) + d2(Xj))
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by the Cauchy-Schwarz inequality: Since the function jk0(u)j is Lipschitz continuous, we can apply
the uniform convergence results of Masry (1996a):

max
1�i�n

����� 1nb
nX
j=1

����k0�Ui � Uj
b

������ Ei

�����k0�Ui � Uj
b

������
����� = Op

(�
log n

nb

�1=2)

max
1�i�n

����� 1nb
nX
j=1

����k0�Ui � Uj
b

����� d2(Xj)� Ei

����k0�Ui � Uj
b

����� d2(Xj)

����� = Op

(�
log n

nb

�1=2)
;

since E[dr2(Xj)] <1: Furthermore,

Ei

�
1

b

����k0�Ui � Uj
b

������ =

Z
jk0(t)j (Ui + tb)dt

Ei

�����k0�Ui � Uj
b

����� d2(Xj)

�
=

Z
jk0(t)j d2(Ui + tb) (Ui + tb)dt

are uniformly bounded, where d2(Ui) = E[d2(Xi)jUi]: Therefore, for suitable constants and dominat-
ing functions

jRnij �
k1
nb3
(d3(Xi) + k2) +

k3
nb
(d1(Xi) + k4)

with probability tending to one. This gives the result. Furthermore, we have max1�i�n dl(Xi) =

Op(n
1=r); so that max1�i�n jRnij = Op(n

�1b�3n1=r): Provided n(r�2)=rb6 !1; this term is op(n�1=2).

With additional smoothness conditions on k and m; this condition can be substantially weakened.

We now turn to the leading term Tni: By the Masry (1996a) results

max
1�i�n

����� 1nb2
nX
j=1

k0
�
Ui � Uj

b

�
d(Xj)� Ei

�
1

b2
k0
�
Ui � Uj

b

�
d(Uj)

������ = Op

(�
log n

nb3

�1=2)
; (43)

for any function d with �nite moments, where d(Uj) = E[d(Xj)jUj]: Under our bandwidth conditions
this term is op(1): Furthermore, for any twice continuously di¤erentiable function d(u) we have����E � 1b2k0

�
Ui � Uj

b

�
d(Uj) j Ui

�
� [d(Ui) (Ui)]0

���� (44)

=

����Z 1

b2
k0
�
Ui � u

b

�
d(u) (u)du� [d(Ui) (Ui)]0

����
=

����Z 1

b
k

�
Ui � u

b

�
[d(u) (u)]0du� [d(Ui) (Ui)]0

����
=

����Z k(t)
�
[d(Ui + tb) (Ui + tb)]0 � [d(Ui) (Ui)]0

�
dt

����
= Op(b

2)
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by integration by parts, change of variables and dominated convergence using the symmetry of k. This

order is uniform in i by virtue of the boundedness and continuity of the relevant functions. In (43)

and (44) take d(u) = 1 and d(u) = m�(u); and note that [d(Ui) (Ui)]0 = d
0
(Ui) (Ui) + d(Ui) 

0(Ui):

Therefore,

1

nb2

nX
j=1

k0
�
Ui � Uj

b

�
@m

@�>
(Xi; �0) =

@m

@�>
(Xi; �0) 

0(Ui) + op(1)

1

nb2

nX
j=1

k0
�
Ui � Uj

b

�
@m

@�>
(Xj; �0) = m0

�(Ui) (Ui) +m�(Ui) 
0(Ui) + op(1)

uniformly in i:

In conclusion,

max
1�i�n

jTni �
1

n

nX
j=1

L�(Zi; Zj)j = op(n
�1=2) ; max

1�i�n
jRnij = op(n

�1=2);

which gives the �rst part of the lemma. Also, we have

max
1�i�n

j 1
n

nX
j=1

L�(Zi; Zj)j = Op

(�
log n

nb

�1=2)
+Op(b

2);

by the Masry results.

The proof of (41) follows as for (34).

9.5 Stochastic Equicontinuity Results

We now show that condition (iii) of Lemma 1 is satis�ed in our case. Let �n(c) = f�:
p
nj���0j � cg:

Since
p
n(b� � �0) = Op(1); for all � > 0 there exists a c� and an integer n0 such that for all n � n0;

Pr[b� 2 �n(c�)] � 1� �: De�ne the stochastic process

�n(�) =
1p
n

nX
i=1

f(Zi; �)� E[f(Zi; �)]; � 2 �;

where

f(Zi; �) = r[�(m(x; �)); x] +
r0[�(m(x; �)� Ui(�)); x]�

0(m(x; �)� Ui(�))[Yi � 1(Ui(�) > 0)]
 (Ui)

and de�ne the pseudo-metric �(�; �0) = E([f(Zi; �)� f(Zi; �
0)]
2
); on �: Under this metric, the para-

meter space � is totally bounded. We are only interested in the behaviour of this process as � varies

in the small set �n: By writing � = �0+ n�1=2; we shall make a reparameterization to �n(); where

 2 �(c) � Rp: We establish the following result:
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sup
2�

j�n()� �n(0)j = op(1) (45)

To prove (45) it is su¢ cient to show a pointwise law of large numbers, e.g., �n() � �n(0) = op(1)

for any  2 �; and stochastic equicontinuity of the process �n at  = 0. The pointwise result is

immediate because the random variables are sums of i.i.d. random variables with �nite absolute

moment and zero mean; the probability limit of �n() is the same for all  2 � by the smoothness
of the expected value in . To complete the proof of (45) we shall use the following lemma, proved

below, which states that �n is stochastically equicontinuous in �. The di¢ culty in establishing the

required equicontinuity arises solely because the function m inside U is nonlinear in �:

Lemma SE. Under the above assumptions, the process �n() is stochastically equicontinuous, i.e.,

for all � > 0 and � > 0; there exists � > 0 such that

lim sup
n!1

Pr

"
sup

�(t1;t2)<�

j�n(t1)� �n(t2)j > �

#
< �:

Proof of Lemma SE. By a second order Taylor series expansion of m(Zi; �) around m(Zi; �
0):

m(Zi; �
0 + n�1=2) = m(Zi; �

0) +
1p
n

pX
k=1

@m

@�k
(Zi; �

0)k +
1

n

pX
k=1

pX
r=1

@2m

@�k@�r
(Zi; �)kr (46)

for some intermediate points �: De�ne the linear approximation to m(Zi; �
0 + n�1=2);

T (Zi; ) = m(Zi; �
0) +

pX
k=1

@m

@�k
(Zi; �

0)k

for any : By assumption C2, for all k; r; sup�2� j@2m(Zi; �)=@�k@�rj2 � d(Zi) with Ed(Zi) < 1:

Therefore, for all � > 0 there exists an " > 0 such that

Pr

�
1p
n
max
i;k;r

sup
�2�n

���� @2m@�k@�r
(Zi; �)

���� > "

�
� n

X
k;r

Pr

�
1p
n
sup
�2�n

���� @2m@�k@�r
(Zi; �)

���� > "

�

�
P

k;r E[d(Zi)]

"2
� �;

by the Bonferroni and Chebychev inequalities. Therefore, with probability tending to one

max
1�i�n

����� 1n
pX
k=1

pX
r=1

@2m

@�k@�r
(Zi; �)kr

����� � �p
n
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for some � <1: De�ne the stochastic process

�n1(; �) =
1p
n

nX
i=1

f(Zi; �0 + n�1=2; �n�1=2)� Ef(Zi; �0 + n�1=2; �n�1=2)

on  2 � and � 2 � = [0; �]; where

f(Zi; �0 + n�1=2; �n�1=2)

= r[�(m(x; �0 + n�1=2)); x]

+
r0[�(m(x; �0 + n�1=2)� Ui(�0 + n�1=2)); x]�0(m(x; �0 + n�1=2)� Ui(�0 + n�1=2))

 (Ui)

�[Yi � 1(T (Zi; n�1=2) +
�p
n
> 0)]

It su¢ ces to show that �n1(; �) is stochastically equicontinuous in ; �; and the deterministic cen-

tering term is of smaller order. The latter argument is a standard Taylor expansion. The argument

for �n1(; �) is very similar to that contained in Sherman (1993) because we have a linear index

structure in this part. One can apply Lemma 2.12 in Pakes and Pollard (1989).
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TABLES AND FIGURES

σ = 5 σ = 10 σ = 25 σ = 50
n=100 n=300 n=500 n=100 n=300 n=500 n=100 n=300 n=500 n=100 n=300 n=500

RPMSE bμ1 4.04 3.86 2.39 4.20 4.54 3.10 6.51 5.87 4.25 10.54 7.11 5.88bμ2 4.52 3.66 2.16 4.49 4.30 2.69 6.37 5.36 3.73 9.78 6.37 5.02bμ3 5.65 2.20 1.64 5.64 2.69 1.97 8.09 3.86 2.90 10.69 4.60 3.64bμ4 4.80 1.77 1.25 4.75 2.15 1.59 6.42 3.38 2.43 8.42 4.53 3.32bμ6 4.77 3.89 2.07 5.03 3.69 2.05 6.05 3.89 2.43 8.37 4.32 3.28
PMAE bμ1 3.20 3.20 1.89 3.32 3.70 2.47 5.23 4.65 3.34 8.45 5.69 4.61bμ2 3.59 3.07 1.73 3.60 3.57 2.13 5.11 4.25 3.02 7.86 5.09 3.92bμ3 4.50 1.77 1.31 4.54 2.12 1.59 6.59 3.01 2.29 8.65 3.67 2.91bμ4 3.75 1.44 0.99 3.76 1.73 1.28 5.15 2.65 1.90 6.74 3.59 2.62bμ6 3.82 3.29 1.63 4.06 3.07 1.60 4.85 3.20 1.93 6.98 3.54 2.67
RIMSE bμ1 14.39 7.89 5.81 14.29 7.88 5.76 14.84 8.58 6.36 17.29 11.72 9.59bμ2 12.85 5.29 2.50 13.22 5.60 3.06 14.18 7.21 4.81 16.60 10.90 8.94bμ3 12.28 4.76 3.35 12.21 5.16 3.46 13.52 6.39 4.32 16.12 9.83 7.81bμ4 11.90 4.58 3.18 11.80 4.90 3.27 12.56 6.12 4.02 14.65 9.79 7.66bμ6 11.83 5.72 3.58 11.80 5.75 3.50 12.32 6.41 4.02 14.62 9.67 7.65
IMAE bμ1 10.88 5.71 4.10 10.77 5.90 4.17 11.08 6.46 4.74 13.41 8.98 7.33bμ2 10.54 4.17 1.92 10.76 4.47 2.34 11.10 5.61 3.68 13.05 8.56 6.94bμ3 9.44 3.59 2.49 9.52 3.88 2.62 10.61 4.93 3.33 12.71 7.68 6.13bμ4 9.12 3.36 2.33 9.16 3.59 2.45 9.77 4.69 3.05 11.53 7.69 5.98bμ6 9.32 4.50 2.73 9.39 4.47 2.65 9.72 4.99 3.11 11.74 7.64 6.04
Table 1. Estimation of conditional mean in discrete bid design; 500 replications;



σ = 5 σ = 10 σ = 25 σ = 50
n=100 n=300 n=500 n=100 n=300 n=500 n=100 n=300 n=500 n=100 n=300 n=500

RPMSE bμ1 8.95 7.43 7.12 7.40 5.03 5.35 6.43 4.13 3.87 9.89 8.17 7.32bμ2 16.39 14.51 12.89 13.00 10.93 9.97 6.93 5.05 5.08 8.73 7.29 6.64bμ3 6.75 2.65 2.08 5.43 2.53 2.52 5.54 3.14 3.18 7.68 5.29 5.12bμ4 6.60 2.13 1.39 5.15 1.98 1.49 5.47 2.56 2.14 8.27 5.33 4.87bμ6 27.26 13.86 15.33 24.38 14.16 13.71 19.55 15.42 13.01 19.92 15.00 10.80
PMAE bμ1 8.02 7.03 6.95 6.29 4.36 4.91 5.11 3.32 3.06 7.86 6.86 6.34bμ2 16.20 14.43 12.85 12.69 10.77 9.86 5.58 4.22 4.43 7.04 6.10 5.69bμ3 5.64 2.04 1.60 4.51 1.97 2.08 4.46 2.52 2.66 6.11 4.45 4.60bμ4 5.41 1.59 1.05 4.19 1.54 1.18 4.39 2.03 1.66 6.60 4.42 4.09bμ6 23.28 10.77 12.42 21.01 12.25 12.08 17.20 12.80 10.69 14.67 10.98 8.19
RIMSE bμ1 17.56 11.35 8.11 14.23 9.73 7.68 10.07 9.06 8.83 13.02 13.08 13.61bμ2 22.07 14.37 9.93 18.01 11.22 7.69 10.16 6.61 5.86 10.82 11.03 11.78bμ3 6.75 2.65 2.08 5.43 2.53 2.52 5.54 3.14 3.18 7.68 5.29 5.12bμ4 6.60 2.13 1.39 5.15 1.98 1.49 5.47 2.56 2.14 8.27 5.33 4.87bμ6 21.78 14.62 11.68 19.31 13.37 11.36 17.32 14.33 13.35 19.93 17.30 17.30
IMAE bμ1 15.98 9.62 6.99 12.74 8.23 6.55 7.52 6.44 5.83 9.75 10.18 10.96bμ2 21.59 13.37 9.19 17.40 10.24 7.03 8.11 5.27 4.30 8.43 8.94 9.92bμ3 5.64 2.04 1.60 4.51 1.97 2.08 4.46 2.52 2.66 6.11 4.45 4.60bμ4 5.41 1.59 1.05 4.19 1.54 1.18 4.39 2.03 1.66 6.60 4.42 4.09bμ6 17.95 11.24 9.09 16.41 11.33 9.84 14.52 11.34 10.27 14.24 12.64 12.72
Table 2. Estimation of conditional standard deviation in discrete bid design; 500 replications;



σ = 5 σ = 10 σ = 25 σ = 50
n=100 n=300 n=500 n=100 n=300 n=500 n=100 n=300 n=500 n=100 n=300 n=500

RPMSE bμ1 5.64 3.30 2.58 6.34 3.79 3.07 8.57 5.42 4.46 11.39 7.25 5.90bμ2 5.02 2.90 2.32 5.60 3.33 2.68 7.57 4.83 3.94 10.20 6.39 5.24bμ3 4.40 2.24 1.68 5.10 2.70 2.08 6.63 3.71 2.81 8.01 4.55 3.44bμ4 3.51 1.66 1.23 4.10 2.10 1.62 5.67 3.14 2.36 7.89 4.42 3.34bμ6 5.85 3.36 2.59 5.96 3.39 2.65 6.39 3.72 2.88 7.57 4.34 3.31
PMAE bμ1 4.41 2.61 2.06 5.00 3.01 2.44 6.83 4.31 3.55 9.07 5.74 4.70bμ2 4.00 2.31 1.84 4.43 2.66 2.13 6.06 3.84 3.15 8.16 5.12 4.18bμ3 3.43 1.75 1.32 4.07 2.14 1.66 5.29 2.96 2.24 6.37 3.63 2.74bμ4 2.76 1.32 0.98 3.26 1.68 1.29 4.52 2.51 1.88 6.22 3.51 2.65bμ6 4.66 2.67 2.07 4.76 2.71 2.11 5.11 2.97 2.30 6.05 3.45 2.65
RIMSE bμ1 12.41 7.59 6.02 12.37 7.56 6.06 13.03 7.99 6.53 15.88 11.22 9.75bμ2 7.85 4.42 3.42 8.30 4.80 3.77 10.34 6.39 5.19 14.36 10.33 9.16bμ3 8.14 4.57 3.51 8.44 4.69 3.70 9.64 5.50 4.35 12.68 9.06 8.07bμ4 7.70 4.32 3.32 7.89 4.38 3.47 9.01 5.14 4.07 12.61 9.00 8.03bμ6 9.02 5.22 4.03 9.00 5.12 4.05 9.47 5.51 4.39 12.41 8.96 8.01
IMAE bμ1 8.88 5.44 4.33 8.97 5.48 4.40 9.73 5.97 4.89 12.11 8.56 7.50bμ2 6.01 3.40 2.64 6.35 3.69 2.90 7.91 4.90 4.00 11.01 8.01 7.19bμ3 6.04 3.39 2.61 6.39 3.56 2.81 7.48 4.27 3.37 9.80 7.08 6.37bμ4 5.62 3.14 2.42 5.87 3.26 2.59 6.92 3.95 3.11 9.76 7.02 6.34bμ6 6.95 4.03 3.11 6.99 3.97 3.14 7.37 4.27 3.41 9.61 6.98 6.33
Table 3. Estimation of conditional mean in continuous design; 10,000 replications;



σ = 5 σ = 10 σ = 25 σ = 50
n=100 n=300 n=500 n=100 n=300 n=500 n=100 n=300 n=500 n=100 n=300 n=500

RPMSE bμ1 9.65 7.43 6.46 7.51 5.33 4.55 6.74 4.42 3.62 10.70 7.80 7.18bμ2 16.71 14.02 12.48 13.05 10.66 9.37 6.92 5.30 4.63 9.60 7.08 6.62bμ3 5.20 2.90 2.12 5.20 2.81 2.36 5.44 3.47 3.00 7.95 5.62 5.09bμ4 4.31 2.16 1.46 4.14 1.95 1.42 4.98 2.75 2.08 8.67 5.71 4.89bμ6 20.62 15.39 13.24 19.29 14.55 12.71 20.71 15.83 13.98 24.09 15.72 12.25
PMAE bμ1 8.90 7.10 6.24 6.42 4.71 4.05 5.36 3.55 2.87 8.69 6.51 6.17bμ2 16.52 13.94 12.43 12.72 10.50 9.25 5.56 4.43 3.94 7.92 5.93 5.67bμ3 4.02 2.19 1.64 4.03 2.24 1.94 4.26 2.79 2.47 6.51 4.78 4.51bμ4 3.32 1.59 1.10 3.19 1.54 1.12 3.93 2.19 1.67 7.08 4.71 4.11bμ6 15.34 11.92 10.46 16.04 12.58 11.20 18.36 13.20 11.29 18.27 11.34 9.23
RIMSE bμ1 12.18 9.98 9.02 11.03 8.99 8.09 12.29 9.37 8.26 18.70 14.29 12.92bμ2 14.69 12.28 11.12 12.07 9.69 8.58 9.88 6.81 5.64 16.49 12.26 11.16bμ3 5.20 2.90 2.12 5.20 2.81 2.36 5.44 3.47 3.00 7.95 5.62 5.09bμ4 4.31 2.16 1.46 4.14 1.95 1.42 4.98 2.75 2.08 8.67 5.71 4.89bμ6 18.69 13.95 12.18 17.50 13.44 11.73 19.04 14.56 12.87 24.26 18.15 15.80
IMAE bμ1 10.07 8.42 7.63 9.38 7.59 6.77 9.28 6.46 5.45 14.00 10.99 10.34bμ2 13.48 11.51 10.49 11.16 9.05 8.02 7.38 4.97 4.15 12.55 9.82 9.34bμ3 4.02 2.19 1.64 4.03 2.24 1.94 4.26 2.79 2.47 6.51 4.78 4.51bμ4 3.32 1.59 1.10 3.19 1.54 1.12 3.93 2.19 1.67 7.08 4.71 4.11bμ6 13.47 10.51 9.37 14.18 11.31 10.03 16.16 11.49 9.78 18.34 13.35 11.88
Table 4. Estimation of conditional standard deviation in continuous design; 10,000 replications;




